Proteomic strategies in the search for novel pancreatic cancer biomarkers and drug targets: recent advances and clinical impact.

Expert Rev Proteomics

a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University, Glasnevin , Dublin 9 , Ireland.

Published: December 2016

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers; despite a low incidence rate it is the fourth leading cause of cancer-related death in the world. Improvement of the diagnosis, prognosis and treatment remains the main focus of pancreatic cancer research. Rapid developments in proteomic technologies has improved our understanding of the pancreatic cancer proteome. Here, the authors summarise the recent proteomic strategies undertaken in the search for: novel biomarkers for early diagnosis, pancreatic cancer-specific proteins which may be used for novel targeted therapies and proteins which may be useful for monitoring disease progression post-therapy. Recent advances and findings discussed here provide great promise of having a significant clinical impact and improving the outcome of patients with this malignancy.

Download full-text PDF

Source
http://dx.doi.org/10.1586/14789450.2016.1167601DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
12
proteomic strategies
8
search novel
8
clinical impact
8
pancreatic
5
strategies search
4
novel pancreatic
4
cancer biomarkers
4
biomarkers drug
4
drug targets
4

Similar Publications

Introduction: Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS.

View Article and Find Full Text PDF

Background: Pancreatic cancer remains one of the deadliest malignancies, largely due to its late diagnosis and lack of effective therapeutic targets.

Materials And Methods: Using traditional machine learning methods, including random-effects meta-analysis and forward-search optimization, we developed a robust signature validated across 14 publicly available datasets, achieving a summary AUC of 0.99 in training datasets and 0.

View Article and Find Full Text PDF

The pancreatic ductal adenocarcinoma (PDAC) is among the deadliest tumor diseases worldwide. While treatment options have generally become more diverse, little progress has been made in the treatment of PDAC and the median survival time for patients with locally advanced PDAC is between 8.7 and 13.

View Article and Find Full Text PDF

Background: Current management of patients with borderline resectable pancreatic adenocarcinoma (BR-PDAC) depends on the degree of involvement of the major arterial and venous structures. The aim of this study was to evaluate 3D segmentation and printing to predict tumor size and vascular involvement of BR-PDAC to improve pre-operative planning of vascular resection and better select patients for neoadjuvant therapy.

Methods: We retrospectively evaluated 16 patients with BR-PDAC near vascular structures who underwent pancreatoduodenectomy (PD) with or without vascular resection between 2015 and 2021.

View Article and Find Full Text PDF

The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!