This study describes a simple and sensitive approach for visual and point-of-care detection of P. aeruginosa and its toxin genes based on multiple loop-mediated isothermal amplification (mLAMP) and lateral flow nucleic acid biosensor (LFNAB). Differentiation of the internal standard gene ecfX and toxin genes (ExoS and ExoU) in P. aeruginosa was determined using FITC-, hex-and digoxin-modified primers in the mLAMP process. In the presence of biotin-and FITC- (hex-, digoxin-) modified primers and Bst DNA polymerase large fragments, the mLAMP produced numerous biotin- and FITC- (hex-, digoxin-) attached duplex DNA products. The products were detected by LFNAB through dual immunoreactions (anti-biotin antibodies on the gold nanoparticle (Au-NP) and biotin on the duplex, anti-FITC (hex, digoxin) antibodies on the LFNAB test line and FITC (hex, digoxin) on the duplex). The accumulation of Au-NPs produced a characteristic red band, enabling visual detection of P. aeruginosa and its toxin genes without instrumentation. After systematic optimization of LFNAB preparation and detecting conditions, the current approach was capable of detecting concentrations as low as 20 CFU/mL P. aeruginosa or its toxin genes within 50min without complicated instrument, which is more sensitive than PCR. Therefore, this approach provides a simple, pollution free, sensitive, and low-cost point-of-care test for the detection of P. aeruginosa and its toxin genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2016.03.006 | DOI Listing |
mBio
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
Background: is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of , focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA.
Methods: A total of 19,711 genomes were retrieved from GenBank.
Stem Cell Res Ther
January 2025
Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.
View Article and Find Full Text PDFmSphere
January 2025
Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA.
Lori Huberman works in the field of fungal genetics, with an emphasis on investigating the genetic mechanisms fungi use to sense and respond to the nutrients and toxins in their environment. In this mSphere of Influence article, she reflects on how "Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons" by K. M.
View Article and Find Full Text PDFmSphere
January 2025
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!