Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor.

Biosens Bioelectron

Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Published: July 2016

This study describes a simple and sensitive approach for visual and point-of-care detection of P. aeruginosa and its toxin genes based on multiple loop-mediated isothermal amplification (mLAMP) and lateral flow nucleic acid biosensor (LFNAB). Differentiation of the internal standard gene ecfX and toxin genes (ExoS and ExoU) in P. aeruginosa was determined using FITC-, hex-and digoxin-modified primers in the mLAMP process. In the presence of biotin-and FITC- (hex-, digoxin-) modified primers and Bst DNA polymerase large fragments, the mLAMP produced numerous biotin- and FITC- (hex-, digoxin-) attached duplex DNA products. The products were detected by LFNAB through dual immunoreactions (anti-biotin antibodies on the gold nanoparticle (Au-NP) and biotin on the duplex, anti-FITC (hex, digoxin) antibodies on the LFNAB test line and FITC (hex, digoxin) on the duplex). The accumulation of Au-NPs produced a characteristic red band, enabling visual detection of P. aeruginosa and its toxin genes without instrumentation. After systematic optimization of LFNAB preparation and detecting conditions, the current approach was capable of detecting concentrations as low as 20 CFU/mL P. aeruginosa or its toxin genes within 50min without complicated instrument, which is more sensitive than PCR. Therefore, this approach provides a simple, pollution free, sensitive, and low-cost point-of-care test for the detection of P. aeruginosa and its toxin genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.03.006DOI Listing

Publication Analysis

Top Keywords

toxin genes
24
aeruginosa toxin
20
detection aeruginosa
16
visual detection
8
lateral flow
8
flow nucleic
8
nucleic acid
8
acid biosensor
8
fitc- hex-
8
hex- digoxin-
8

Similar Publications

Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .

View Article and Find Full Text PDF

Background: is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of , focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA.

Methods: A total of 19,711 genomes were retrieved from GenBank.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

mSphere of Influence: High-throughput screens to rapidly assign function to microbial genes.

mSphere

January 2025

Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA.

Lori Huberman works in the field of fungal genetics, with an emphasis on investigating the genetic mechanisms fungi use to sense and respond to the nutrients and toxins in their environment. In this mSphere of Influence article, she reflects on how "Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons" by K. M.

View Article and Find Full Text PDF

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!