Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients.

Neuro Oncol

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia (J.S.C., Z.L., S.S.G., C.A.H., H.S.); Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia(H.G.S., E.S.); Winship Cancer Institute of Emory University, Atlanta, Georgia(H.G.S., Z.L., J.J.O., C.G.H., H.S.); Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia(S.S.G., L.A.D.C., B.K., H.S.); Department of Biomedical informatics, Emory University School of Medicine, Atlanta, Georgia(L.A.D.C.); Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia(J.J.O., C.G.H.); Department of Pathology, Emory University School of Medicine, Atlanta, Georgia(S.G.N.); Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York (C.G.H.).

Published: August 2016

AI Article Synopsis

  • * Proton spectroscopic MRI (sMRI) was developed to better identify tumor margins by analyzing metabolic activity, leading to a pipeline that integrates sMRI with surgical planning to enhance tissue sampling.
  • * Results showed significant correlations between sMRI biomarkers and tumor cell density, indicating that sMRI could improve detection of tumor infiltration and recurrence risk, potentially enhancing local control in GBM patients.

Article Abstract

Background: The standard of care for glioblastoma (GBM) is maximal safe resection followed by radiation therapy with chemotherapy. Currently, contrast-enhanced MRI is used to define primary treatment volumes for surgery and radiation therapy. However, enhancement does not identify the tumor entirely, resulting in limited local control. Proton spectroscopic MRI (sMRI), a method reporting endogenous metabolism, may better define the tumor margin. Here, we develop a whole-brain sMRI pipeline and validate sMRI metrics with quantitative measures of tumor infiltration.

Methods: Whole-brain sMRI metabolite maps were coregistered with surgical planning MRI and imported into a neuronavigation system to guide tissue sampling in GBM patients receiving 5-aminolevulinic acid fluorescence-guided surgery. Samples were collected from regions with metabolic abnormalities in a biopsy-like fashion before bulk resection. Tissue fluorescence was measured ex vivo using a hand-held spectrometer. Tissue samples were immunostained for Sox2 and analyzed to quantify the density of staining cells using a novel digital pathology image analysis tool. Correlations among sMRI markers, Sox2 density, and ex vivo fluorescence were evaluated.

Results: Spectroscopic MRI biomarkers exhibit significant correlations with Sox2-positive cell density and ex vivo fluorescence. The choline to N-acetylaspartate ratio showed significant associations with each quantitative marker (Pearson's ρ = 0.82, P < .001 and ρ = 0.36, P < .0001, respectively). Clinically, sMRI metabolic abnormalities predated contrast enhancement at sites of tumor recurrence and exhibited an inverse relationship with progression-free survival.

Conclusions: As it identifies tumor infiltration and regions at high risk for recurrence, sMRI could complement conventional MRI to improve local control in GBM patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933486PMC
http://dx.doi.org/10.1093/neuonc/now036DOI Listing

Publication Analysis

Top Keywords

spectroscopic mri
12
mri biomarkers
8
radiation therapy
8
local control
8
whole-brain smri
8
gbm patients
8
metabolic abnormalities
8
density vivo
8
vivo fluorescence
8
smri
7

Similar Publications

Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.

View Article and Find Full Text PDF

Simultaneous Concentration and T Mapping of Brain Metabolites by Fast Multi-Echo Spectroscopic Imaging.

NMR Biomed

February 2025

MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.

The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Purpose: Proton magnetic resonance spectroscopic imaging ( -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution -MRSI to accurately remove lipid and water signals while preserving the metabolite signal.

View Article and Find Full Text PDF

Objectives: Phosphorus-31 magnetic resonance spectroscopic imaging (P-MRSI) is a non-invasive tool for assessing cellular high-energy metabolism in-vivo. However, its acquisition suffers from a low sensitivity, which necessitates large voxel sizes or multiple averages to achieve an acceptable signal-to-noise ratio (SNR), resulting in long scan times.

Materials And Methods: To overcome these limitations, we propose an acquisition and reconstruction scheme for FID-MRSI sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!