Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794737 | PMC |
http://dx.doi.org/10.1038/srep23292 | DOI Listing |
J Pharm Anal
November 2024
National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
In this study, 34 deep eutectic solvents (DESs) were successfully prepared for the extraction of proanthocyanidin from Rhodiolae Crenulatae Radix et Rhizomes. The extraction process was optimized using single factor exploration and Box-Behnken design-response surface analysis. The extraction rate was significantly improved when the molar ratio of choline chloride to 1,3-propanediol was 1:3.
View Article and Find Full Text PDFMater Futur
March 2025
Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Magnesium (Mg) and its alloys are revolutionizing the field of interventional surgeries in the medical industry. Their high biocompatibility, biodegradability, and a similar elastic modulus to natural bone make porous Mg-based structures potential candidates for orthopedic implants and tissue engineering scaffolding. However, fabricating and machining porous Mg-based structures is challenging due to their complexity and difficulties in achieving uniform or gradient porosity.
View Article and Find Full Text PDFSci Rep
January 2025
College of Material Science and Engineering, Henan Institute of Technology, Xinxiang, 453003, China.
A rivet of aluminum and auxiliary gasket of nickel were adopted to weld A1060 aluminum plate and T2 copper plate using resistance element welding. The interfacial microstructure was analyzed and the tensile shear load of the joint was tested. A layer of AlCu and the eutectic structure of AlCu and (Al) were formed in the interfacial zone of Al/Cu.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, Centre for Bioenergy, SASTRA Deemed to be University, India. Electronic address:
The novelty of this study is to examine the impact of different solvent systems, namely organic and deep eutectic solvents, on recovery yield, antioxidant activity, poly-dispersity index, and functional properties of microbial dextran. The optimized conditions for maximum dextran recovery were obtained using organic solvent found to be: supernatant: organic solvent - 1:4 v/v; organic solvents: ethanol, isopropanol, and acetone; temperature: 0 °C; and time: 16 h. Though a similar structure was obtained for dextran recovered using various solvents, the degree of branching varied, with DES-precipitated dextran having the highest branching of 20 % α-(1,3) linkages.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran.
The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!