Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4800433PMC
http://dx.doi.org/10.1038/ncomms11009DOI Listing

Publication Analysis

Top Keywords

design synthesis
4
synthesis superionic
4
superionic conductor
4
conductor na10snp2s12
4
na10snp2s12 sodium-ion
4
sodium-ion batteries
4
batteries emerging
4
emerging candidates
4
candidates large-scale
4
large-scale energy
4

Similar Publications

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Mechanistic understanding of pH as a driving force in cancer therapeutics.

J Mater Chem B

January 2025

Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.

The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.

View Article and Find Full Text PDF

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

Agonists of insect hormones, namely molting hormone (MH) and juvenile hormone (JH), disrupt the normal growth of insects and can be employed as insecticides that are harmless to vertebrates. In this study, a series of experiments and computational analyses were conducted to rationally design novel insect hormone agonists. Syntheses and quantitative structure-activity relationship (QSAR) analyses of two MH agonist chemotypes, imidazothiadiazoles and tetrahydroquinolines, revealed that the structural factors important for the ligand-receptor interactions are significantly different between these chemotypes.

View Article and Find Full Text PDF

Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality (how was the data generated, using which protocol with which controls), as part of good research output management, is necessary to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and Re-usable) data and the everyday practice of experimental researchers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!