Intense research efforts have been focused on the improvement of the efficiency and sensitivity of malaria diagnostics, especially in resource-limited settings for the detection of asymptomatic infections. Our recently developed magneto-optical (MO) method allows the accurate quantification of malaria pigment crystals (hemozoin) in blood by their magnetically induced rotation. First evaluations of the method using β-hematin crystals and in vitro P. falciparum cultures implied its potential for high-sensitivity malaria diagnosis. To further investigate this potential, here we study the performance of the method in monitoring the in vivo onset and progression of the blood-stage infection in a rodent malaria model. Our results show that the MO method can detect the first generation of intraerythrocytic P. berghei parasites 66-76 hours after sporozoite injection, demonstrating similar sensitivity to Giesma-stained light microscopy and exceeding that of flow cytometric techniques. Magneto-optical measurements performed during and after the treatment of P. berghei infections revealed that both the follow up under treatment and the detection of later reinfections are feasible with this new technique. The present study demonstrates that the MO method - besides being label and reagent-free, automated and rapid - has a high in vivo sensitivity and is ready for in-field evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794716PMC
http://dx.doi.org/10.1038/srep23218DOI Listing

Publication Analysis

Top Keywords

blood-stage infection
8
magneto-optical method
8
method
6
malaria
5
efficient monitoring
4
monitoring blood-stage
4
infection malaria
4
malaria rodent
4
rodent model
4
model rotating-crystal
4

Similar Publications

Reproducibly assessing malaria exposure is critical for force health protection for military service members deployed to malaria-endemic regions as well as for civilians making public health decisions and evaluating malaria eradication efforts. However, malaria disease surveillance is challenged by under-reporting, natural immunity, and chemoprophylaxis, which can mask malaria exposure and lead to an underestimation of malaria prevalence. In this study, we determined the feasibility of using a serosurveillance-based approach to measure Anopheles vector exposure, Plasmodium sporozoite exposure, and blood-stage parasitemia using a multiplex serological panel.

View Article and Find Full Text PDF

Quantifying Plasmodium vivax radical cure efficacy: a modelling study integrating clinical trial data and transmission dynamics.

Lancet Infect Dis

January 2025

Institut Pasteur, Université Paris Cité, G5 Épidémiologie et Analyse des Maladies Infectieuses, Paris, France. Electronic address:

Background: Plasmodium vivax forms dormant liver stages (hypnozoites) that can reactivate weeks to months after primary infection. Radical cure requires a combination of antimalarial drugs to kill both the blood-stage and liver-stage parasites. Hypnozoiticidal efficacy of the liver-stage drugs primaquine and tafenoquine cannot be estimated directly because hypnozoites are undetectable.

View Article and Find Full Text PDF

Reticulocyte Binding Protein Homologue (RH5), a leading malaria vaccine candidate, is essential for erythrocyte invasion by the parasite, interacting with the human host receptor, basigin. RH5 has a small number of polymorphisms relative to other blood-stage antigens, and studies have shown that vaccine-induced antibodies raised against RH5 are strain-transcending, however most studies investigating RH5 diversity have been done in Africa. Understanding the genetic diversity and evolution of malaria antigens in other regions is important for their validation as vaccine candidates.

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Background: R21 is a novel malaria vaccine, composed of a fusion protein of the malaria circumsporozoite protein and hepatitis B surface antigen. Following favourable safety and immunogenicity in a phase 1 study, we aimed to assess the efficacy of R21 administered with Matrix-M (R21/MM) against clinical malaria in adults from the UK who were malaria naive in a controlled human malaria infection study.

Methods: In this open-label, partially blinded, phase 1-2A controlled human malaria infection study undertaken in Oxford, Southampton, and London, UK, we tested five novel vaccination regimens of R21/MM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!