Experimental models of renal calcium stones in rodents.

World J Nephrol

Héloïse Bilbault, Jean-Philippe Haymann, Institut National de la Santé et de la Recherche Médicale, UMR_S 1155, 75020 Paris, France.

Published: March 2016

In human nephrolithiasis, most stones are containing calcium and are located within urinary cavities; they may contain monohydrate calcium oxalate, dihydrate calcium oxalate and/or calcium phosphates in various proportion. Nephrolithiasis may also be associated with nephrocalcinosis, i.e., crystal depositions in tubular lumen and/or interstitium, an entity which suggests specific pathological processes. Several rodents models have been developed in order to study the pathophysiology of intrarenal crystal formation. We review here calcium rodent models classified upon the presence of nephrolithiasis and/or nephrocalcinosis. As rodents are not prone to nephrolithiasis, models require the induction of a long standing hypercalciuria or hyperoxaluria (thus explaining the very few studies reported), conversely to nephrocalcinosis which may occur within hours or days. Whereas a nephrotoxicity leading to tubular injury and regeneration appears as a critical event for crystal retention in nephrocalcinosis models, surprisingly very little is known about the physiopathology of crystal attachment to urothelium in nephrolithiasis. Creating new models of nephrolithiasis especially in different genetic mice strains appears an important challenge in order to unravel the early mechanisms of urinary stone formation in papilla and fornices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777791PMC
http://dx.doi.org/10.5527/wjn.v5.i2.189DOI Listing

Publication Analysis

Top Keywords

calcium oxalate
8
calcium
6
nephrolithiasis
6
models
5
experimental models
4
models renal
4
renal calcium
4
calcium stones
4
stones rodents
4
rodents human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!