SuhB Associates with Nus Factors To Facilitate 30S Ribosome Biogenesis in Escherichia coli.

mBio

Wadsworth Center, New York State Department of Health, Albany, New York, USA Department of Biomedical Sciences, University at Albany, Albany, New York, USA

Published: March 2016

Unlabelled: A complex of highly conserved proteins consisting of NusB, NusE, NusA, and NusG is required for robust expression of rRNA in Escherichia coli. This complex is proposed to prevent Rho-dependent transcription termination by a process known as "antitermination." The mechanism of this antitermination in rRNA is poorly understood but requires association of NusB and NusE with a specific RNA sequence in rRNA known as BoxA. Here, we identify a novel member of the rRNA antitermination machinery: the inositol monophosphatase SuhB. We show that SuhB associates with elongating RNA polymerase (RNAP) at rRNA in a NusB-dependent manner. Although we show that SuhB is required for BoxA-mediated antitermination in a reporter system, our data indicate that the major function of the NusB/E/A/G/SuhB complex is not to prevent Rho-dependent termination of rRNA but rather to promote correct rRNA maturation. This occurs through formation of a SuhB-mediated loop between NusB/E/BoxA and RNAP/NusA/G. Thus, we have reassigned the function of these proteins at rRNA and identified another key player in this complex.

Importance: As RNA polymerase transcribes the rRNA operons in E. coli, it complexes with a set of proteins called Nus that confer enhanced rates of transcription elongation, correct folding of rRNA, and rRNA assembly with ribosomal proteins to generate a fully functional ribosome. Four Nus proteins were previously known, NusA, NusB, NusE, and NusG; here, we discover and describe a fifth, SuhB, that is an essential component of this complex. We demonstrate that the main function of this SuhB-containing complex is not to prevent premature transcription termination within the rRNA operon, as had been long claimed, but to enable rRNA maturation and a functional ribosome fully competent for translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807359PMC
http://dx.doi.org/10.1128/mBio.00114-16DOI Listing

Publication Analysis

Top Keywords

rrna
13
nusb nuse
12
suhb associates
8
escherichia coli
8
prevent rho-dependent
8
transcription termination
8
rna polymerase
8
complex prevent
8
termination rrna
8
rrna maturation
8

Similar Publications

The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.

View Article and Find Full Text PDF

Captivity Reduces Diversity and Shifts Composition of the Great Bustard () Microbiome.

Ecol Evol

January 2025

Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.

Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.

View Article and Find Full Text PDF

is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.

View Article and Find Full Text PDF

The complete plastome size of DC. 1813 was 159,893 bp in length and has a typical quadripartite structure. The 87,148-bp-long large single-copy and the 18,763-bp-long small single-copy regions were separated by a pair of inverted repeats (each 26,991 bp).

View Article and Find Full Text PDF

A complete chloroplast genome of S. S. Lai 2004 (Crassulaceae: Crassuloideae).

Mitochondrial DNA B Resour

January 2025

Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China.

We determined the complete chloroplast genome sequence of S. S. Lai 2004.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!