The tumor suppressor gene RASSF1A is epigenetically silenced in most human cancers. As a binding partner of the kinases MST1 and MST2, the mammalian orthologs of the Drosophila Hippo kinase, RASSF1A is a potential regulator of the Hippo tumor suppressor pathway. RASSF1A shares these properties with the scaffold protein SAV1. The role of this pathway in human cancer has remained enigmatic inasmuch as Hippo pathway components are rarely mutated in tumors. Here we show that Rassf1a homozygous knockout mice develop liver tumors. However, heterozygous deletion of Sav1 or codeletion of Rassf1a and Sav1 produced liver tumors with much higher efficiency than single deletion of Rassf1a. Analysis of RASSF1A-binding partners by mass spectrometry identified the Hippo kinases MST1, MST2, and the oncogenic IκB kinase TBK1 as the most enriched RASSF1A-interacting proteins. The transcriptome of Rassf1a(-/-) livers was more deregulated than that of Sav1(+/-) livers, and the transcriptome of Rassf1a(-/-), Sav1(+/-) livers was similar to that of Rassf1a(-/-) mice. We found that the levels of TBK1 protein were substantially upregulated in livers lacking Rassf1a. Furthermore, transcripts of several β-tubulin isoforms were increased in the Rassf1a-deficient livers presumably reflecting a role of RASSF1A as a microtubule-stabilizing protein. In human liver cancer, RASSF1A frequently undergoes methylation at the promoter but this was not observed for MST1, MST2, or SAV1. Our results suggest a multifactorial role of RASSF1A in suppression of liver carcinogenesis. Cancer Res; 76(9); 2824-35. ©2016 AACR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873365 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-15-3010 | DOI Listing |
J Biomed Sci
November 2024
Department of Pediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands.
Background: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a fatal congenital lung disorder strongly associated with genomic alterations in the Forkhead box F1 (FOXF1) gene and its regulatory region. However, little is known about how FOXF1 genomic alterations cause ACD/MPV and what molecular mechanisms are affected by these mutations. Therefore, the effect of ACD/MPV patient-specific mutations in the FOXF1 gene on the molecular function of FOXF1 was studied.
View Article and Find Full Text PDFDis Model Mech
November 2024
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Airway mucous cell metaplasia is a significant feature of many chronic airway diseases, such as chronic obstructive pulmonary disease, cystic fibrosis and asthma. However, the mechanisms underlying this process remain poorly understood. Here, we employed in vivo mouse genetic models to demonstrate that Hippo and p53 (encoded by Trp53) cooperate to modulate the differentiation of club cells into goblet cells.
View Article and Find Full Text PDFSci Rep
October 2024
Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
The protein kinases DYRK1A and DYRK1B are pivotal regulators of cell cycle progression by promoting cell cycle exit into quiescence. DYRK1B appears to play a more important role in cancer cell quiescence than DYRK1A, as evidenced by its overexpression or copy number variations in human tumour samples. Nonetheless, the stimuli driving DYRK1B upregulation and the potential divergence in expression patterns between DYRK1A and DYRK1B remain largely elusive.
View Article and Find Full Text PDFFASEB J
September 2024
Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.
Macrophages have been recognized as pivotal players in the progression of MASLD/MASH. However, the molecular mechanisms underlying their multifaceted functions in the disease remain to be further clarified. In the current study, we developed a new mouse model with YAP activation in macrophages to delineate the effect and mechanism of YAP signaling in the pathogenesis of MASLD/MASH.
View Article and Find Full Text PDFOncogene
September 2024
Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3 or MST2 (for mRNA or protein, respectively), resulted from the skipping of exon 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!