Comparison of metoprolol tartrate multiple-unit lipid matrix systems produced by different technologies.

Eur J Pharm Sci

Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia. Electronic address:

Published: June 2016

The aim of this study was to develop, evaluate and compare extended release mini-matrices based on metoprolol tartrate (MPT) and either glyceryl behenate (GB) or glyceryl palmitostearate (GPS). Mini-matrices were produced by three different techniques: hot melt extrusion, compression of melt granulates and prilling. Hot-melt extrusion and compression of granules obtained from melted material proved to be reliable, robust and reproducible techniques with aim of obtaining extended release matrices. Prilling tended to be susceptible to increased melt viscosity. Direct compression was not applicable for mini-matrix production due to poor powder flow. In general MPT release from all matrices was affected by its loading and the size of the units/particles. Processing of GB-MPT mixtures by different techniques did not lead to different drug release rates and patterns, while in case of GPS differently obtained matrices provided diverse MPT release outcomes. Matrices based on GB tended to have higher porosity compared to ones composed of GPS and thus most of the GB-based formulations showed faster drug delivery. FT-IR analysis revealed no interactions between primary components used for matrix production and Raman mapping outlined uniform MPT distribution throughout the units. DSC and X-ray studies revealed significant changes in the crystallinity of glycerides after storage under room conditions (GPS samples) and at increased temperature (GB and GPS samples), which was correlated to the changes seen in drug release rate and pattern after storage. Media composition in general tended to insignificantly affect GB matrices, while in case of GPS matrices increasing the pH and presence of biorelevant compounds induced faster drug release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2016.03.011DOI Listing

Publication Analysis

Top Keywords

drug release
12
metoprolol tartrate
8
extended release
8
extrusion compression
8
release matrices
8
mpt release
8
case gps
8
faster drug
8
gps samples
8
release
7

Similar Publications

Background: Initiation of buprenorphine for treatment of opioid use disorder (OUD) in acute care settings improves access and outcomes, however patients who use methamphetamine are less likely to link to ongoing treatment. We describe the intervention and design from a pilot randomized controlled trial of an intervention to increase linkage to and retention in outpatient buprenorphine services for patients with OUD and methamphetamine use who initiate buprenorphine in the hospital.

Methods: The study is a two-arm pilot randomized controlled trial (N = 40) comparing the mHealth Incentivized Adherence Plus Patient Navigation (MIAPP) intervention to treatment as usual.

View Article and Find Full Text PDF

pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.

Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment.

View Article and Find Full Text PDF

Vasoplegia in Heart, Lung, or Liver Transplantation: A Narrative Review.

J Cardiothorac Vasc Anesth

January 2025

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA.

Vasoplegia is a pathophysiologic state of hypotension in the setting of normal or high cardiac output and low systemic vascular resistance despite euvolemia and high-dose vasoconstrictors. Vasoplegia in heart, lung, or liver transplantation is of particular interest because it is common (approximately 29%, 28%, and 11%, respectively), is associated with adverse outcomes, and because the agents used to treat vasoplegia can affect immunosuppressive and other drug metabolism. This narrative review discusses the pathophysiology, risk factors, and treatment of vasoplegia in patients undergoing heart, lung, and liver transplantation.

View Article and Find Full Text PDF

Iontophoresis-driven transdermal drug delivery system based on porous microneedles for hyperuricemia treatment.

Int J Pharm

January 2025

School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:

An iontophoresis-driven porous microneedles (IPMNs) system has been developed for hyperuricemia management, which can be effectively prolong the anti-hyperuricemia effect. Porous microneedles (PMNs) with good biocompatibility, high porous volume, and excellent substance exchange capacity were firstly prepared for drug transdermal delivery and active iontophoresis.In vitro experiments showed that the transdermal delivery efficiency of anti-hyperuricemia drug (Allopurinol, AP) could be controlled using the iontophoresis current of IPMNs system.

View Article and Find Full Text PDF

Smart self-transforming nano-systems for overcoming biological barrier and enhancing tumor treatment efficacy.

J Control Release

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China. Electronic address:

Nanomedicines need to overcome multiple biological barriers in the body to reach the target area. However, traditional nanomedicines with constant physicochemical properties are not sufficient to meet the diverse and sometimes conflicting requirements during in vivo transport, making it difficult to penetrate various biological barriers, resulting in suboptimal drug delivery efficiency. Smart self-transforming nano-systems (SSTNs), capable of altering their own physicochemical properties (including size, charge, hydrophobicity, stiffness, morphology, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!