The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence.

Sci Rep

Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Published: March 2016

DNA methylation is essential for epigenetic regulation of gene transcription and development in many animals, plants and fungi. We investigated whether DNA methylation plays a role in the development and secondary metabolism of Aspergillus flavus, identified the DmtA methyltransferase from A. flavus, and produced a dmtA knock-out mutant by replacing the dmtA coding sequence with the pyrG selectable marker. The A. flavus dmtA null mutant lines produced white fluffy mycelium in liquid medium, and displayed a slightly flavescent conidial pigmentation compared with the normal yellow of the wild-type strain when grown on agar. The ΔdmtA lines exhibited decreased conidiation and aflatoxin (AF) biosynthesis, compared with the wild-type line, suggesting that the DmtA knock-out affected the transcriptional level of genes in the AF cluster. In particular, sclerotia development and host colonization were altered in the dmtA null mutants. Green fluorescent protein tagging at the C-terminus of DmtA showed that DmtA localized to the nucleus and cytoplasm. DNA methylation content measurements in the dmtA mutants revealed no widespread DNA methylation in the mutants or wild-type lines. Thus, our findings suggest that DmtA, apart from being a C-5 cytosine methyltransferase in A. flavus, contributes to asexual development, aflatoxin biosynthesis, sclerotial production and virulence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793245PMC
http://dx.doi.org/10.1038/srep23259DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
aflatoxin biosynthesis
12
dmta
11
dmta methyltransferase
8
aspergillus flavus
8
sclerotial production
8
methyltransferase flavus
8
dmta knock-out
8
dmta null
8
flavus
5

Similar Publications

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations.

View Article and Find Full Text PDF

Whole Blood DNA Methylation Analysis Reveals Epigenetic Changes Associated with ARSACS.

Cerebellum

January 2025

Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare inherited condition described worldwide and characterized by a wide spectrum of heterogeneity in terms of genotype and phenotype. How sacsin loss leads to neurodegeneration is still unclear, and current knowledge indicates that sacsin is involved in multiple functional mechanisms. We hence hypothesized the existence of epigenetic factors, in particular alterations in methylation patterns, that could contribute to ARSACS pathogenesis and explain the pleiotropic effects of SACS further than pathogenic mutations.

View Article and Find Full Text PDF

Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases.

View Article and Find Full Text PDF

Human health risk assessment by exposure to contaminants from an urban reservoir: a pilot study in the Madin Dam (México).

Environ Monit Assess

January 2025

Laboratory of Aquatic Toxicology, Graduate and Research Section, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/N, Delegación Gustavo A. Madero, Ciudad de México, 07738, México.

Water contamination greatly impacts human health. The Metropolitan Area of the Valley of Mexico (MAVM) is one of the most densely inhabited and polluted places globally, with a significant problem being the rising water demand. The research aims to assess the impact of metals such as iron, aluminum, lead, cadmium, and total chromium, among others, in the water of the Madin Dam, a key reservoir in the area's water supply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!