Background: The aetiology of conotruncal heart defects is poorly understood and the birth prevalence varies geographically. The known risk factors for developing conotruncal heart defects are as follows: CHD in siblings, genetic chromosomal abnormalities, paternal age >30 years, high parity, low birth weight, prematurity, and maternal diabetes.

Objective: The aim of this study was to characterise conotruncal heart defects, birth prevalence, mortality, and morbidity in the population of southern Israel, of whom 75% are Jewish and the rest are mostly Bedouin Arabs.

Methods: The data were obtained from Soroka University Medical Center database of births and newborns. Conotruncal heart defects cases were identified by ICD9 codes.

Results: During 1991-2011, there were 247,290 singleton live births and 393 conotruncal heart defects in Soroka University Medical Center. The birth prevalence per 10,000 live births of tetralogy of Fallot, transposition of the great arteries, and truncus arteriosus was 9.5, 5, and 1.8, respectively. In the multivariate analysis, Bedouin descent (adjusted odds ratio 2.40, p35 years (1.66, p=0.004), and siblings with congenital heart defects (1.98, p=0.005) were associated with tetralogy of Fallot, and Bedouin descent (1.61, p=0.05), siblings with congenital heart defects (2.19, p=0.004), and diabetes mellitus (7.15, p<0.001) were associated with transposition of the great arteries. In a univariate analysis, Bedouin descent (p=0.004) and congenital heart defects in siblings (p<0.001) were associated with truncus arteriosus.

Conclusion: We observed higher birth prevalence of conotruncal heart defects compared with the birth prevalence reported worldwide, specifically among the Bedouins, a population characterised with high consanguinity rate. Therefore, genetic counselling and early fetal echocardiograms should be encouraged, especially in high consanguinity rate populations. Naturally, further educational efforts are needed in order to decrease consanguinity and its related consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1047951116000202DOI Listing

Publication Analysis

Top Keywords

heart defects
32
conotruncal heart
24
birth prevalence
16
heart
8
defects
8
soroka university
8
university medical
8
medical center
8
live births
8
tetralogy fallot
8

Similar Publications

Introduction: 22q11 deletion syndrome (22q11DS) results from a microdeletion on chromosome 22 and is the most common microdeletion disorder in humans, affecting 1 in 2148 live births. Clinical manifestations vary widely among individuals and across different life stages. Effective management requires the involvement of a specialized multidisciplinary team.

View Article and Find Full Text PDF

Hot Phases Cardiomyopathy: Pathophysiology, Diagnostic Challenges, and Emerging Therapies.

Curr Cardiol Rep

January 2025

Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), European Reference Network for Rare, University of Trieste, Via P. Valdoni 7, 34100, Trieste, Italy.

Purpose Of Review: Hot phases are a challenging clinical presentation in arrhythmogenic cardiomyopathy (ACM), marked by acute chest pain and elevated cardiac troponins in the absence of obstructive coronary disease. These episodes manifest as myocarditis and primarily affect young patients, contributing to a heightened risk of life-threatening arrhythmias and potential disease progression. This review aims to synthesize recent research on the pathophysiology, diagnostic challenges, and therapeutic management of hot phases in ACM.

View Article and Find Full Text PDF

Sonic Hedgehog signaling regulates the optimal differentiation pace from early-stage mesoderm to cardiogenic mesoderm in mice.

Dev Growth Differ

January 2025

Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.

Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium.

View Article and Find Full Text PDF

Survivorship from congenital heart disease has improved rapidly secondary to advances in surgical and medical management. Because these patients are living longer, treatment and disease surveillance targets have shifted toward enhancing quality of life and functional status. Cardiopulmonary exercise testing is a valuable tool for assessing functional capacity, evaluating cardiac and pulmonary pathology, and providing guidance on prognosis and interventional recommendations.

View Article and Find Full Text PDF

A multitude of studies have presented inconsistent outcomes regarding the association between maternal folic acid (FA) and/or multivitamin (MV) supplementation and congenital heart disease (CHD) in offspring. This study aimed to estimate supplementation time and CHD based on a prospective China birth cohort study (CBCS). In the CBCS, 114,670 singleton pregnant women who had pregnancy outcomes until August 2021 and responded to the early pregnancy questionnaire were recruited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!