Correction for 'Absolute stereochemistry and preferred conformations of urate degradation intermediates from computed and experimental circular dichroism spectra' by Silvio Pipolo et al., Org. Biomol. Chem., 2011, 9, 5149-5155.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6ob90042a | DOI Listing |
Org Biomol Chem
January 2025
Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190 Austria.
Chemical 1,1'-glycosylation for the synthesis of non-reducing disaccharides is complicated by the need to simultaneously control the stereochemistry at two anomeric centers. While considerable progress has been made in the synthesis of α,α-disaccharides, the assembly of 1,1'-β,β- and 1,1'-β,α-linked non-reducing sugars has received comparatively less attention. Many naturally occurring non-reducing disaccharides and their biologically active mimetics feature asymmetrically located functional groups at different positions on the two pyranose rings, highlighting the demand for reliable stereoselective methods to synthesize fully orthogonally protected 1,1'-conjugated sugars suitable for targeted functionalisation to create important biomolecules.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.
In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.
View Article and Find Full Text PDFMini Rev Med Chem
January 2025
Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.
Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.
View Article and Find Full Text PDFACS Chem Neurosci
November 2024
Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
J Med Chem
October 2024
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
Cystobactamids have a unique oligoarylamide structure and exhibit broad-spectrum activity against Gram-negative and Gram-positive bacteria. In this study, the central α-amino acid of the cystobactamid scaffold was modified to address the relevance of stereochemistry, hydrogen bonding and polarity by 33 derivatives. As demonstrated by three matched molecular pairs, l-amino acids were preferred over d-amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!