The Effects of CKD on Cytochrome P450-Mediated Drug Metabolism.

Adv Chronic Kidney Dis

College of Pharmacy, Faculty of Health Professions, Dalhousie University, Halifax, NS, Canada; and Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada. Electronic address:

Published: March 2016

AI Article Synopsis

  • Chronic Kidney Disease (CKD) is becoming more common globally, affecting medication response due to changes in kidney function.
  • It impacts not only kidney-related drug elimination but also liver metabolism via cytochrome P450 enzymes, influencing how drugs are processed in the body.
  • Evidence shows that CKD can diminish CYP enzyme activity, but this can improve with kidney transplantation or hemodialysis, highlighting the need to understand these interactions in medication management and kidney health.

Article Abstract

CKD affects a significant proportion of the world's population, and the prevalence of CKD is increasing. Standard practice currently is to adjust the dose of renally eliminated medications as kidney function declines in effort to prevent adverse drug reactions. It is increasingly becoming recognized that CKD also impacts nonrenal clearance mechanisms such as hepatic and intestinal cytochrome P450 (CYP) enzymes and drug transport proteins, the latter of which is beyond the scope of this review. CYPs are responsible for the metabolism of many clinically used drugs. Genetics, patient factors (eg, age and disease) and drug interactions are well known to affect CYP metabolism resulting in variable pharmacokinetics and responses to medications. There now exists an abundance of evidence demonstrating that CKD can impact the activity of many CYP isoforms either through direct inhibition by circulating uremic toxins and/or by reducing CYP gene expression. Evidence suggests that reductions in CYP metabolism in ESRD are reversed by kidney transplantation and temporarily restored via hemodialysis. This review summarizes the current understanding of the effects that CKD can have on CYP metabolism and also discusses the impact that CYP metabolism phenotypes can have on the development of kidney injury.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.ackd.2015.10.002DOI Listing

Publication Analysis

Top Keywords

cyp metabolism
16
effects ckd
8
cyp
7
metabolism
6
ckd
5
ckd cytochrome
4
cytochrome p450-mediated
4
drug
4
p450-mediated drug
4
drug metabolism
4

Similar Publications

Interest and limits of using pharmacogenetics in MDMA-related fatalities: A case report.

Forensic Sci Int Genet

December 2024

Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d'Angers, Angers, France.

Interpreting postmortem concentrations of 3,4-Methylenedioxymethamphetamine (MDMA) remains challenging due to the wide range of reported results and the potential idiosyncratic nature of MDMA toxicity. Consequently, forensic pathologists often rely on a body of evidence to establish conclusions regarding the cause and the manner of death in death involving MDMA. Given these issues, implementing pharmacogenetics' (PGx)' testing may be beneficial.

View Article and Find Full Text PDF

Introduction: Zongertinib (BI 1810631) is a potent, selective, and epidermal growth factor receptor (EGFR) wild-type sparing human epidermal growth factor receptor 2 (HER2) inhibitor. Based on in vitro data, the oxidative hepatic metabolism of zongertinib is principally driven by cytochrome P450 (CYP) 3A4/5. Therefore, zongertinib may be affected by strong CYP3A inducers, like carbamazepine.

View Article and Find Full Text PDF

Cardiotoxicity associated with hepatic metabolism and drug-drug interactions is a serious concern. Predicting drug toxicity using animals remains challenging due to species and ethical concerns, necessitating the need to develop alternative approaches. Drug cardiotoxicity associated with hepatic metabolism cannot be detected using a cardiomyocyte-only evaluation system.

View Article and Find Full Text PDF

A Template system for the understanding of human CYP2J2-mediated reactions was constructed from the assembly of the ligands with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site, which were in common with other Template* systems for human CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 (Drug Metab Pharmacokinet 2016, 2017, 2019, 2020, 2021, 2022, 2023, 2024, and in press 2024). CYP2J2 system also includes ideas of bi-molecule binding of ligands on the Template. From their placements on the Template and rules for interaction modes, verifications of good and poor substrates, regio/stereo-selectivity, and inhibitory interaction became available faithfully for these ligands.

View Article and Find Full Text PDF

Cytochromes P450 (CYP) form one of the largest enzyme superfamilies on Earth, with similar structural fold but biological functions varying from synthesis of physiologically essential compounds to metabolism of myriad xenobiotics. Here we determined the crystal structures of and human sterol 14α-demethylases (CYP51s). Both structures reveal elements that imply elevated conformational flexibility, uncovering molecular basis for faster catalytic rates, lower substrate selectivity, and resistance to inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!