ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2-dependent migration.

FASEB J

*Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France;

Published: June 2016

AI Article Synopsis

  • CCR2 is a crucial target for treating inflammation, and while many antagonists have been developed, none are approved for clinical use yet.
  • Researchers identified a new, short peptide called ECL1i that inhibits CCL2-triggered chemotaxis in human and mouse CCR2, showing selectivity and potency with an IC50 of 2 µM.
  • ECL1i was effective in vivo, reducing recruitment of CCR2-positive cells and slowing disease progression in a mouse model of multiple sclerosis, marking it as the first allosteric inhibitor of CCR2 with functional selectivity.

Article Abstract

CC chemokine receptor type 2 (CCR2) is a key molecule in inflammatory diseases and is an obvious drug target for the treatment of inflammation. A number of nonpeptidic, competitive CCR2 antagonists have been developed, but none has yet been approved for clinical use. Our aim was to identify a short peptide that showed allosteric antagonism against human and mouse CCR2. On the basis of sequence analysis and 3-dimensional modeling, we identified an original 7-d-amino acid peptidic CCR2 inhibitor that we have called extracellular loop 1 inverso (ECL1i), d(LGTFLKC). In vitro, ECL1i selectively and potently inhibits CC chemokine ligand type 2 (CCL2)-triggered chemotaxis (IC50, 2 µM) but no other conventional CCL2-associated events. We used the classic competitive CCR2 antagonist, BMS22 {2-[(isopropylaminocarbonyl)amino]-N-[2-[[cis-2-[[4-(methylthio)benzoyl]amino]cyclohexyl]amino]-2-oxoethyl]-5-(trifluoromethyl)benzamide}, as positive control and inhibited CCL2-dependent chemotaxis with an IC50 of 18 nM. As negative control, we used a peptide with the same composition as ECL1i, but in a different sequence, d(FKLTLCG). In vivo, ECL1i (4 mg/kg) interfered with CCR2-positive cell recruitment and attenuated disease progression in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. This study establishes ECL1i as the first allosteric inhibitor of CCR2 with functional selectivity. ECL1i is a promising new agent in therapeutic development, and it may, by its selective effect, increase our understanding of CCR2 signaling pathways and functions.-Auvynet, C., Baudesson de Chanville, C., Hermand, P., Dorgham, K., Piesse, C., Pouchy, C., Carlier, L., Poupel, L., Barthélémy, S., Felouzis, V., Lacombe, C., Sagan, S., Salomon, B., Deterre, P., Sennlaub, F., Combadière, C. ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2-dependent migration.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201500116DOI Listing

Publication Analysis

Top Keywords

ecl1i dlgtflkc
12
ecl1i
8
dlgtflkc novel
8
novel small
8
small peptide
8
peptide inhibits
8
inhibits ccl2-dependent
8
ccl2-dependent migration
8
competitive ccr2
8
chemotaxis ic50
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!