In the semiarid area, the structural nature of sandy land is changed due to wind erosion. Furthermore, assessing the changes in the composition and surface roughness in several spatial and temporal scales is significant for the wind erosion model calculations. As a noninvasive approach, remote sensing can be used to improve the study of sandy surface in time and space. In order to characterize the surface structure using the reflectance of sandy land, we analysis the effects of the changes of sandy surface structure on the bidirectional reflectance distribution basing on the multi-angular and hyperspectral measurements in the field; the measured sandy land samples are taken from nature, but the surface structures are artificial: one type is the direction of sand furrows is parallel to the incident direction, the other is the direction of sand furrows is perpendicular to the incident direction. At the same time, we analyzed the effects of surface structure on the bidirectional reflectance factor of sand land and we also retrieve the sandy surface roughness using the reflectance model parameter. The results suggest that both types of sand furrows will influence the distribution of reflectance of sandy land surface, for example, the backward scattering of sandy land increased when the direction of sand furrows is perpendicular to the incident direction, and the range of backward scattering of sandy land expended when the direction of sand furrows is parallel to the incident direction. When we compared the measured reflectance with the modeled results basing on the reflectance model, it is found that the reflectance model can be used to simulate the reflectance property of sandy land surface and prove that the parameter of model is useful for retrieving the surface roughness. This research not only presents the sample for quantifying the structural information of sandy land by the reflectance measurements, but also shows valuable reference for the research of intrinsic optical property of sandy land and the reversion of the texture of sandy land. In other words, this paper can also help the scientists understand the effect of the structural information on the optical properties of sandy land.
Download full-text PDF |
Source |
---|
Environ Monit Assess
December 2024
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
Methane (CH) processes and fluxes have been widely investigated in low-latitude tropical wetlands and high-latitude boreal peatlands. In the mid-latitude Mongolia Plateau, however, CH processes and fluxes have been less studied, particularly in riverine wetlands. In this study, in situ experiments were conducted in the riverine sandy wetlands of the Mongolia Plateau to gain a better understanding of CH emissions and their influencing mechanisms.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
Sci Total Environ
December 2024
Wageningen University & Research, Animal Production Systems Group, 6706 WD Wageningen, the Netherlands; Christian Albrechts University, Grass and Forage Science/Organic Agriculture, D-24118 Kiel, Germany.
The integration between crop and livestock production systems (ICLS) at regional level is seen as a pathway for more sustainable food production. The objective was to assess the effects on farm structure, economic performance and environmental impact of an ICLS with varying constraints on agricultural emissions, changes in land use and a lower external input use as means to achieve environmental targets. A linear optimization model was used for economic optimization of ICLS under different scenarios for the case of crop and dairy production systems on sandy soils in the Netherlands.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
The study of dredged fill in Guangdong (GD), China, is of great significance for reclamation projects. Currently, there are relatively few studies on dredged fill in Guangdong, and there are many differences in the engineering characteristics of dredged fill foundations formed through land reclamation and natural foundations. In order to have a more comprehensive understanding of the physico-mechanical properties of blowing fill in the coastal area of GD and to understand the effect of its long-term creep row on the long-term settlement and deformation of buildings, the material properties, microstructure, elemental composition, triaxial shear properties, and triaxial creep properties of dredged fill in Guangdong were studied and analyzed through indoor geotechnical tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and conventional triaxial shear tests and triaxial creep tests.
View Article and Find Full Text PDFPlants (Basel)
November 2024
College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
Water resources are crucial factors that limit vegetation recovery, and rational planning of silvicultural patterns is essential for the efficient utilization of water in arid and semi-arid regions. This study examined the water utilization strategies of pure shrubs (pure stands of and pure stands of ) and mixed shrubs (mixed stands of , and mixed stands of ) from the rainy to dry seasons using stable isotope techniques and MixSIAR modeling in the Mu Us Sandy Land in the semi-arid region of China. Mixed shrubs were significantly more effective than pure shrubs in utilizing the primary water sypply from the soil layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!