A recent entry into the rapidly evolving field of integrated PET/MR scanners is presented in this paper: a whole body hybrid PET/MR system (SIGNA PET/MR, GE Healthcare) capable of simultaneous acquisition of both time-of-flight (TOF) PET and high resolution MR data. The PET ring was integrated into an existing 3T MR system resulting in a (patient) bore opening of 60 cm diameter, with a 25 cm axial FOV. PET performance was evaluated both on the standalone PET ring and on the same detector integrated into the MR system, to assess the level of mutual interference between both subsystems. In both configurations we obtained detector performance data. PET detector performance was not significantly affected by integration into the MR system. The global energy resolution was within 2% (10.3% versus 10.5%), and the system coincidence time resolution showed a maximum change of < 3% (385 ps versus 394 ps) when measured outside MR and during simultaneous PET/MRI acquisitions, respectively. To evaluate PET image quality and resolution, the NEMA IQ phantom was acquired with MR idle and with MR active. Impact of PET on MR IQ was assessed by comparing SNR with PET acquisition on and off. B0 and B1 homogeneities were acquired before and after the integration of the PET ring inside the magnet. In vivo brain and whole body head-to-thighs data were acquired to demonstrate clinical image quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2016.2537811 | DOI Listing |
Cancer Imaging
January 2025
Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, No. 100, Haining Road, Shanghai, 200080, China.
Background: Programmed cell death 1/programmed death ligand-1 (PD-L1)-based immune checkpoint blockade is an effective treatment approach for non-small-cell lung cancer (NSCLC). However, immunohistochemistry does not accurately or dynamically reflect PD-L1 expression owing to its spatiotemporal heterogeneity. Herein, we assessed the feasibility of using a Ga-labeled anti-PD-L1 nanobody, Ga-NODAGA-NM-01, for PET imaging of PD-L1.
View Article and Find Full Text PDFMed Phys
January 2025
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.
View Article and Find Full Text PDFJ Community Hosp Intern Med Perspect
November 2024
MedStar Health Internal Medicine Residency Program, Baltimore, MD, USA.
Gastric Linitis plastica is characterized by extensive infiltration of gastric wall by poorly differentiated tumor cells, creating a "leather-bottle stomach" appearance. We describe a case involving a 71-year-old male presenting with globus sensation, early satiety and weight loss. Recent EGD had revealed chronic gastritis with polypoid mucosa at the GE junction, and subsequent FDG-PET indicated asymmetric FDG localization.
View Article and Find Full Text PDFNanoscale
January 2025
Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Tiara-like metal nanoclusters (TNCs) composed of group 10 transition metals and thiolates can easily change their number of polymerization and include various molecules or metal ions as guests within their ring structures. Therefore, they are expected to be applied in sensing, storage, and catalyst materials based on their selective inclusion characteristics. However, there are very few reports regarding the principles of selective inclusion for guest molecules/ions in TNCs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiology, The University of Alabama at Birmingham, Birmingham, USA.
Manganese-52 is gaining interest as an isotope for PET imaging due to its desirable decay and chemical properties for radiopharmaceutical development. Somatostatin receptor 2 (SSTR2) is significantly overexpressed by neuroendocrine tumors (NETs) and is an important target for nuclear imaging and therapy. As an agonist, [Ga]Ga-DOTATATE has demonstrated significant internalization upon interaction with receptor ligands, whereas [Ga]Ga-DOTA-JR11(as an antagonist) exhibits limited internalization but better pharmacokinetics and increased tumor uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!