Objectives: This study assessed the clinical and budgetary impacts of human papillomavirus (HPV) primary screening with HPV16/18 genotyping, in contrast to current cervical cancer screening strategies.
Study Design: A decision-tree framework and Markov model were used to model clinical and cost implications of screening and diagnosis of disease.
Methods: A model was developed to compare the annual clinical and budgetary impact of HPV screening with genotyping versus cytology, and co-testing with and without genotyping. Epidemiology and test performance inputs are from the literature and the Addressing THE Need for Advanced HPV Diagnostics (ATHENA) trial. Costs are from a US payer perspective. Clinical impact was measured as the resulting incidence of cervical cancer, and budget impact is reported as annual cost per screened woman. The model considered the impact of patient noncompliance (loss to follow-up) at both the initial screen and re-test.
Results: Cytology was found to be inferior to both co-testing and HPV primary screening. Co-testing was inferior to co-testing with genotyping. Co-testing with genotyping every 3 years (incidence = 5.5 per 100,000 women; annual investment = $61) or 5 years (incidence = 7.4 per 100,000 women; annual investment = $37) was slightly more effective, but more costly than HPV primary screening every 3 years (incidence = 6.2 per 100,000 women; annual investment = $48) or 5 years (incidence = 8.1 per 100,000 women; annual investment = $30). Genotyping strategies were relatively stable to the effects of patient noncompliance.
Conclusions: Primary HPV screening with genotyping represents a sensible combination of clinical effectiveness and costs, while reducing the risks associated with patient noncompliance.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!