Objectives: The objective of this study is to evaluate whether real-time torque feedback may reduce the occurrence of stripping when inserting nonlocking screws through fracture plates into synthetic cancellous bone.
Methods: Five attending orthopaedic surgeons and 5 senior level orthopaedic residents inserted 8 screws in each phase. In phase I, screws were inserted without feedback simulating conventional techniques. In phase II, screws were driven with visual torque feedback. In phase III, screws were again inserted with conventional techniques. Comparison of these 3 phases with respect to screw insertion torque, surgeon rank, and perception of stripping was used to establish the effects of feedback.
Results: Seventy-three of 239 screws resulted in stripping. During the first phase, no feedback was provided and the overall strip rate was 41.8%; this decreased to 15% with visual feedback (P < 0.001) and returned to 35% when repeated without feedback. With feedback, a lower average torque was applied over a narrower torque distribution. Residents stripped 40.8% of screws compared with 20.2% for attending surgeons. Surgeons were poor at perceiving whether they stripped.
Conclusions: Prevention and identification of stripping is influenced by surgeon perception of tactile sensation. This is significantly improved with utilization of real-time visual feedback of a torque versus roll curve. This concept of real-time feedback seems beneficial toward performance in synthetic cancellous bone and may lead to improved fixation in cancellous bone in a surgical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BOT.0000000000000564 | DOI Listing |
ACS Appl Mater Interfaces
November 2024
Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
Treatment of large-size bone defects is difficult, and acquiring autografts may be challenging due to limited availability. A synthetic patient-specific bone substitute can be developed by using 3D printing technologies in such cases. In the present study, we have developed photocurable composite resins with poly(trimethylene carbonate) (PTMC) containing a high percentage of biodegradable bioactive strontium-substituted nanohydroxyapatite (SrHA, size 30-70 nm).
View Article and Find Full Text PDFInt J Oral Maxillofac Implants
October 2024
The development of a successful bone grafting technology with cohesive and adhesive properties has been an elusive goal for dental and orthopedic researchers. Tetracalcium phosphate combined with phosphoserine (TTCP-PS) is a synthetic, injectable, cohesive, self-setting, mineral-organic wet-field adhesive. The objective of this study was to evaluate four formulations of TTCP-PS in comparison to the conventional grafting materials, Bioglass and deproteinized cancellous bovine bone with a bioresorbable collagen membrane in standardized defects created in the angle of the rat mandible.
View Article and Find Full Text PDFSci Rep
September 2024
Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France.
The development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors.
View Article and Find Full Text PDFMed Eng Phys
August 2024
Institute for Biomechanics, BG Unfallklinik Murnau, Prof. Küntscher Str. 8, 82418 Murnau, Germany; Institute for Biomechanics, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria.
In addition to human donor bones, bone models made of synthetic materials are the gold standard substitutes for biomechanical testing of osteosyntheses. However, commercially available artificial bone models are not able to adequately reproduce the mechanical properties of human bone, especially not human osteoporotic bone. To overcome this issue, new types of polyurethane-based synthetic osteoporotic bone models have been developed.
View Article and Find Full Text PDFBMC Oral Health
August 2024
Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual and Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
Background: The infrazygomatic crest mini-screw has been widely used, but the biomechanical performance of mini-screws at different insertion angles is still uncertain. The aim of this study was to analyse the primary stability of infrazygomatic crest mini-screws at different angles and to explore the effects of the exposure length (EL), screw-cortical bone contact area (SCA), and screw-trabecular bone contact area (STA) on this primary stability.
Methods: Ninety synthetic bones were assigned to nine groups to insert mini-screws at the cross-combined angles in the occlusogingival and mesiodistal directions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!