Dechlorination of Trichloroacetic Acid Using a Noble Metal-Free Graphene-Cu Foam Electrode via Direct Cathodic Reduction and Atomic H.

Environ Sci Technol

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China.

Published: April 2016

A three-dimensional graphene-copper (3D GR-Cu) foam electrode prepared by chemical vapor deposition method exhibited superior electrocatalytic activity toward the dechlorination of trichloroacetic acid (TCAA) as compared to the Cu foam electrode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that GR accelerated the electron transfer from the cathode surface to TCAA. With the applied cathode potential of -1.2 V (vs SCE), 95.3% of TCAA (500 μg/L) was removed within 20 min at pH 6.8. TCAA dechlorination at the Cu foam electrode was enhanced at acidic pH, while a slight pH effect was observed at the GR-Cu foam electrode with a significant inhibition for Cu leaching. The electrocatalytic dechlorination of TCAA was accomplished via a combined stepwise and concerted pathway on both electrodes, whereas the concerted pathway was efficiently promoted on the GR-Cu foam electrode. The direct reduction by electrons was responsible for TCAA dechlorination at Cu foam electrode, while at GR-Cu foam electrode, the surface-adsorbed atomic H* also contributed to TCAA dechlorination owing to the chemical storage of hydrogen in the GR structure. Finally, the potential applicability of GR-Cu foam was revealed by its stability in the electrocatalytic dechlorination over 25 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b05006DOI Listing

Publication Analysis

Top Keywords

foam electrode
32
gr-cu foam
20
tcaa dechlorination
12
foam
9
dechlorination trichloroacetic
8
trichloroacetic acid
8
electrode
8
electrode direct
8
dechlorination foam
8
electrocatalytic dechlorination
8

Similar Publications

In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.

View Article and Find Full Text PDF

Microbial-induced Synthesis of nano NiFe LDH for High-efficiency Oxygen Evolution.

Chemistry

January 2025

Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.

NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.

View Article and Find Full Text PDF

Boosting the Performance of Alkaline Anion Exchange Membrane Water Electrolyzer with Vanadium-Doped NiFeO.

Small

January 2025

Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.

Developing efficient, economical, and stable catalysts for the oxygen evolution reaction is pivotal for producing large-scale green hydrogen in the future. Herein, a vanadium-doped nickel-iron oxide supported on nickel foam (V-NiFeO/NF) is introduced, and synthesized via a facile hydrothermal method as a highly efficient electrocatalyst for water electrolysis. X-ray photoelectron and absorption spectroscopies reveal a synergistic interaction between the vanadium dopant and nickel/iron in the host material, which tunes the electronic structure of NiFeO to increase the number of electrochemically active sites.

View Article and Find Full Text PDF

Trichloroethylene (TCE) is widely used in various industrial applications, leading to significant environmental and public health concerns due to its toxicity and persistence. Current nonthermal liquid-phase TCE treatment methods, including electrochemical processes, typically produce liquid byproducts that require additional separation steps, limiting their efficiency. To overcome these challenges, this study introduces an innovative electrochemical approach for the direct conversion of TCE gas into less harmful gaseous products, utilizing a Cu/Ni alloy 3D foam electrode integrated with a poly(vinyl alcohol) (PVA)-sodium polyphosphate (SPP) gel membrane system.

View Article and Find Full Text PDF

With the increasing societal demand for sustainable and renewable energy, supercapacitors have become research hotspots. Transition metal oxides, due to their high capacitance and abundant resources, are the preferred electrode materials. However, their poor conductivity and volume changes limit performance enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!