Disulfide Cross-linking of a Multidrug and Toxic Compound Extrusion Transporter Impacts Multidrug Efflux.

J Biol Chem

From the Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064

Published: April 2016

AI Article Synopsis

Article Abstract

Multidrug and toxic compound extrusion (MATE) transporters contribute to multidrug resistance by extruding different drugs across cell membranes. The MATE transporters alternate between their extracellular and intracellular facing conformations to propel drug export, but how these structural changes occur is unclear. Here we combine site-specific cross-linking and functional studies to probe the movement of transmembrane helices in NorM from Neiserria gonorrheae (NorM-NG), a MATE transporter with known extracellular facing structure. We generated an active, cysteine-less NorM-NG and conducted pairwise cysteine mutagenesis on this variant. We found that copper phenanthroline catalyzed disulfide bond formation within five cysteine pairs and increased the electrophoretic mobility of the corresponding mutants. Furthermore, copper phenanthroline abolished the activity of the five paired cysteine mutants, suggesting that these substituted amino acids come in spatial proximity during transport, and the proximity changes are functionally indispensable. Our data also implied that the substrate-binding transmembrane helices move up to 10 Å in NorM-NG during transport and afforded distance restraints for modeling the intracellular facing transporter, thereby casting new light on the underlying mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850317PMC
http://dx.doi.org/10.1074/jbc.M116.715227DOI Listing

Publication Analysis

Top Keywords

multidrug toxic
8
toxic compound
8
compound extrusion
8
mate transporters
8
intracellular facing
8
transmembrane helices
8
copper phenanthroline
8
disulfide cross-linking
4
multidrug
4
cross-linking multidrug
4

Similar Publications

Background: The membrane transporters viz. multidrug and toxic compound extrusion (MATE) and aluminum-activated malate transporter (ALMT) are associated with aluminum (Al) tolerance by accelerating secretion of organic acids, which can influence nutrient availability and stress response. However, such transporter families have not yet been reported in lentil under Al stress condition.

View Article and Find Full Text PDF

Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.

View Article and Find Full Text PDF

Non-antibiotic pharmaceuticals are toxic against Escherichia coli with no evolution of cross-resistance to antibiotics.

NPJ Antimicrob Resist

April 2024

Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.

Antimicrobial resistance can arise in the natural environment via prolonged exposure to the effluent released by manufacturing facilities. In addition to antibiotics, pharmaceutical plants also produce non-antibiotic pharmaceuticals, both the active ingredients and other components of the formulations. The effect of these on the surrounding microbial communities is less clear.

View Article and Find Full Text PDF

is a common pathogen of hematogenous lung abscesses. The increased resistance of to antibiotics makes infections difficult to treat, often resulting in a poor prognosis. Therefore, it is important to identify infections as early as possible and evaluate its sensitivity and resistance to antibiotics, to formulate an appropriate treatment plan.

View Article and Find Full Text PDF

Prior studies examined Acidocin 4356's antibacterial and antivirulence effects against Pseudomonas aeruginosa, including cell membrane penetration abilities. Building on prior research, an in-vitro co-culture of human cells was established to evaluate the selectivity of Acidocin (ACD) by concurrently cultivating human cells and bacterial pathogens. This study evaluated the antibacterial effectiveness of ACD against Acinetobacter baumannii and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!