β-lactams resistance gene quantification in an antibiotic resistant Escherichia coli water suspension treated by advanced oxidation with UV/HO.

J Hazard Mater

Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy. Electronic address:

Published: February 2017

Water is one of the most important habitats and route for the spread of antibiotic resistance (AR) in the environment and disinfection processes can be a potential barrier to minimise this risk. In this study the effect of UV/HO process on the potential of AR transfer was investigated through cultivation methods vs (polymerase chain reaction) PCR based methods. bla was selected as target antibiotic resistance gene (ARG) and was quantified by qPCR in the survived colonies and the whole suspension (total DNA). The detection limit of residual antibiotic resistant Escherichia coli (E. coli) colonies (5CFUmL) was reached after 240min treatment, but bla gene was still present in total DNA after 300min (2.8×10 copies mL), and no effect was observed in DNA extracted from cell cultures (3.8×10 copies mL after 90min). Accordingly, the investigated disinfection process may select for unaffected ARGs, therefore contributing to the potential transfer of AR in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2016.03.014DOI Listing

Publication Analysis

Top Keywords

resistance gene
8
antibiotic resistant
8
resistant escherichia
8
escherichia coli
8
antibiotic resistance
8
potential transfer
8
total dna
8
β-lactams resistance
4
gene quantification
4
antibiotic
4

Similar Publications

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Emergence and polyclonal dissemination of NDM-5/OXA-181 carbapenemase-producing Escherichia coli in the French Indian Ocean territories.

Ann Clin Microbiol Antimicrob

January 2025

Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France.

Aim: Located in the Southwest Indian Ocean area (SIOA), the two French overseas territories (FOTs) of Reunion and Mayotte islands are heavily impacted by antimicrobial resistance. The aim of this study was to investigate all cases of NDM-5 and OXA-181 carbapenemase-producing Escherichia coli (CPEc) in these two FOTs between 2015 and 2020, to better understand the regional spread of these last-line treatment resistant bacteria.

Methods: All E.

View Article and Find Full Text PDF

Anti-inflammatory coupled anti-angiogenic airway stent effectively suppresses tracheal in-stents restenosis.

J Nanobiotechnology

January 2025

Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.

Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Resistance-breaking strains of tomato spotted wilt virus hamper photosynthesis and protein synthesis pathways in a virus accumulation-dependent manner in Sw5-carrying tomatoes.

Sci Rep

January 2025

Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126, Bari, Italy.

Tomato spotted wilt virus (TSWV; Orthotospovirus tomatomaculae) is one of the major horticultural threats due to its worldwide distribution and broad host range. In Italy, TSWV is widely spread in tomato (Solanum lycopersicum) crops and causes severe yield losses. In the last decades, several tomato varieties carrying the Sw-5b gene for resistance to TSWV have been released.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!