With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790969 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151300 | PLOS |
Appl Radiat Isot
December 2024
Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
A gamma cell unit is used for gamma irradiation of small volume samples. Due to the sample volume, there is a dose distribution, which is imperative to be known for appropriate irradiation. In this study, samples of agarose Fricke gel dosimeters were prepared for the dose mapping of the gamma cell unit available in our laboratory.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
October 2024
Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
Background And Purpose: During an end-to-end (E2E) test on the online workflow of the MR-linac, the performance of the treatment starting from the acquisition of pre-treatment MRI scans and ending with dose delivery is quantified. In such a test, the geometrical accuracy of the entire workflow is assessed. Ideally, the 3D geometrical accuracy of dose delivery on an MR-linac should be assessed using dosimeters that provide 3D dose distributions.
View Article and Find Full Text PDFMed Phys
October 2024
Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan.
Background: Comprehensive quality assurance (QA) for a seamless workflow of high-dose-rate brachytherapy, from imaging to planning and irradiation, is uncommon, and QA of the source dwell position is performed in one- or two-dimensions. Gel dosimetry using magnetic resonance imaging (MRI) is effective in verifying the three-dimensional distribution of doses for image-guided brachytherapy (IGBT). However, MRI scanners are not readily accessible, and MRI scanning is time-consuming.
View Article and Find Full Text PDFFree Radic Biol Med
November 2024
Department of Radiology, Gifu University, Gifu, Japan; Innovation Research Center for Quantum Medicine, Gifu University, Gifu, Japan; Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan.
The dose of X-ray irradiation is commonly measured by point assessment with an ionization chamber dosimeter. However, to achieve spatially accurate delivery of X-ray to avoid the exposure to normal tissues, an accurate imaging method for spatially and quantitatively detecting exposure is required. Herein, we present a novel method to visualize X-ray exposure using low-field dynamic nuclear polarization magnetic resonance imaging (DNP-MRI) with nitroxyl radical tempol as the chemical dosimeter.
View Article and Find Full Text PDFMed Phys
January 2025
Toshiba Energy Systems & Solutions Corporation, Kawasaki, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!