The fungus Fusarium avenaceum and its closest relatives are responsible for contamination of agricultural plants and their products by mycotoxins such as enniatins and moniliformin. Precise identification of mycotoxin producers is necessary for estimation of the accumulation risk of those compounds and for preventing the consumption of highly contaminated products. Nucleic acids amplification-based techniques proved to be the most rapid and reliable approach for pathogen diagnostics and identification. In this study partial phosphate permease gene (PHO) sequences were determined for Fusarium avenaceum (including one isolate identified as F. arthrosporioides), F. tricinctum, F. acuminatum and F. torulosum. Phylogenetic analysis of 40 isolates of those species from different climates and geographical regions of Russia and some neighboring countries based on sequences of PHO, translation elongation factor 1 alpha (TEF1α), beta-tubulin (β-TUB), enniatin synthetase (Esyn1) genes and combined data set demonstrated that the PHO gene possesses the highest rate of variability among them and can be considered as an informative marker for phylogenetic studies of these species. According to the combined data set phylogeny, the isolates of each species formed clusters with a high bootstrap support. Analysis of PHO sequences revealed a high intraspecific variability of F. avenaceum: there were 5 independent clusters on the dendrogram, including one cluster which was closer to F. torulosum than to other F. avenaceum isolates. Variable sites in PHO sequences have been used for the design of species-specific primers and a fluorescent hydrolysis probe. The specificity of the assay was shown for DNA samples extracted from 68 isolates of 23 Fusarium species. Quantitative PCR approach was applied to estimate the contamination rate of 17 naturally infected oat and barley samples, previously characterized by microbiological procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2016.02.012 | DOI Listing |
J Fungi (Basel)
November 2024
Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada.
is an aggressive pathogen of pulse crops and a causal agent in root rot disease that negatively impacts Canadian agriculture. This study reports the results of a targeted metabolomics-based profiling of secondary metabolism in an 18-strain panel of cultured axenically in multiple media conditions, in addition to an in planta infection assay involving four strains inoculated on two pea cultivars. Multiple secondary metabolites with known roles as virulence factors were detected which have not been previously associated with , including fungal decalin-containing diterpenoid pyrones (FDDPs), fusaoctaxins, sambutoxin and fusahexin, in addition to confirmation of previously reported secondary metabolites including enniatins, fusarins, chlamydosporols, JM-47 and others.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
Seven cyclic depsipeptides, including two new cyclic pentadepsipeptides avenamides A () and B (), were isolated from a plant-derived fungus W8 by using the bioassay-guided fractionation method. The planar structures were elucidated by using comprehensive spectroscopic analyses, including 1D and 2D NMR, as well as MS/MS spectrometry. The absolute configuration of the amino acid and hydroxy acid residues was confirmed by using the advanced Marfey's method and chiral HPLC analysis, respectively.
View Article and Find Full Text PDFPlant Dis
November 2024
Shaanxi Normal University, College of Life Sciences, No. 620, West Chang'an Avenue, Chang'an, Xi'an, [Select a State/Province], China, 710119;
Plant Dis
August 2024
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Department of Ecology and Agriculture, Lanzhou, Gansu, China.
Sensors (Basel)
July 2024
Forest Protection Department, Forest Research Institute, Ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland.
An electronic device based on the detection of volatile substances was developed in response to the need to distinguish between fungal infestations in food and was applied to wheat grains. The most common pathogens belong to the fungi of the genus : , , , and . The electronic nose prototype is a low-cost device based on commercially available TGS series sensors from Figaro Corp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!