Update on a tumor-associated NADH oxidase in gastric cancer cell growth.

World J Gastroenterol

Hsiao-Ling Cheng, Yi-Hui Lee, Pin-Ju Chueh, Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.

Published: March 2016

Gastric cancer is one of the most common human malignancies, and its prevalence has been shown to be well-correlated with cancer-related deaths worldwide. Regrettably, the poor prognosis of this disease is mainly due to its late diagnosis at advanced stages after the cancer has already metastasized. Recent research has emphasized the identification of cancer biomarkers in the hope of diagnosing cancer early and designing targeted therapies to reverse cancer progression. One member of a family of growth-related nicotinamide adenine dinucleotide (NADH or hydroquinone) oxidases is tumor-associated NADH oxidase (tNOX; ENOX2). Unlike its counterpart CNOX (ENOX1), identified in normal rat liver plasma membranes and shown to be stimulated by growth factors and hormones, tNOX activity purified from rat hepatoma cells is constitutively active. Its activity is detectable in the sera of cancer patients but not in those of healthy volunteers, suggesting its clinical relevance. Interestingly, tNOX expression was shown to be present in an array of cancer cell lines. More importantly, inhibition of tNOX was well correlated with reduced cancer cell growth and induction of apoptosis. RNA interference targeting tNOX expression in cancer cells effectively restored non-cancerous phenotypes, further supporting the vital role of tNOX in cancer cells. Here, we review the regulatory role of tNOX in gastric cancer cell growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779913PMC
http://dx.doi.org/10.3748/wjg.v22.i10.2900DOI Listing

Publication Analysis

Top Keywords

cancer cell
16
cancer
12
gastric cancer
12
cell growth
12
tumor-associated nadh
8
nadh oxidase
8
tnox expression
8
cancer cells
8
role tnox
8
tnox
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!