Expanding vaccine efficacy estimation with dynamic models fitted to cross-sectional prevalence data post-licensure.

Epidemics

CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Porto, Portugal; Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil; Liverpool School of Tropical Medicine, Liverpool, United Kingdom.

Published: March 2016

The efficacy of vaccines is typically estimated prior to implementation, on the basis of randomized controlled trials. This does not preclude, however, subsequent assessment post-licensure, while mass-immunization and nonlinear transmission feedbacks are in place. In this paper we show how cross-sectional prevalence data post-vaccination can be interpreted in terms of pathogen transmission processes and vaccine parameters, using a dynamic epidemiological model. We advocate the use of such frameworks for model-based vaccine evaluation in the field, fitting trajectories of cross-sectional prevalence of pathogen strains before and after intervention. Using SI and SIS models, we illustrate how prevalence ratios in vaccinated and non-vaccinated hosts depend on true vaccine efficacy, the absolute and relative strength of competition between target and non-target strains, the time post follow-up, and transmission intensity. We argue that a mechanistic approach should be added to vaccine efficacy estimation against multi-type pathogens, because it naturally accounts for inter-strain competition and indirect effects, leading to a robust measure of individual protection per contact. Our study calls for systematic attention to epidemiological feedbacks when interpreting population level impact. At a broader level, our parameter estimation procedure provides a promising proof of principle for a generalizable framework to infer vaccine efficacy post-licensure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.epidem.2015.11.001DOI Listing

Publication Analysis

Top Keywords

vaccine efficacy
16
cross-sectional prevalence
12
efficacy estimation
8
prevalence data
8
efficacy
5
vaccine
5
expanding vaccine
4
estimation dynamic
4
dynamic models
4
models fitted
4

Similar Publications

Objective: This review synthesizes qualitative research about the experiences of parental caregivers enhancing their children's health after making the decision to not vaccinate their preschool children. This review aims to help health care providers understand the parental work involved in caring for under-vaccinated or unvaccinated children.

Introduction: Much of the current qualitative research literature about parents who are vaccine-hesitant or who decide not to vaccinate their children focuses on parental perceptions about the safety and efficacy of vaccines and decision-making.

View Article and Find Full Text PDF

Disparities in response to mRNA SARS-CoV-2 vaccines according to sex and age: A systematic review.

New Microbes New Infect

February 2025

Department of Global and Public Health, Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Centre for Travellers' Health, Centre of Competence for Military Medicine Biology, University of Zürich, Switzerland.

Background: The rapid development and distribution of mRNA COVID-19 vaccines has been essential in containing the SARS-CoV-2 epidemic around the globe. For ongoing and future immunization campaigns globally, there is a need to evaluate the impact of population demographics such as age and sex, on vaccine efficacy and safety.

Methods: This systematic review (PROSPERO ID CRD42023328245) conducted according to PRISMA guidelines evaluates the impact of age and sex on the safety and efficacy of the mRNA COVID-19 vaccinations administrated in 15 studies that were chosen according to strict criteria.

View Article and Find Full Text PDF

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants with defined mutations that enhance pathogenicity or facilitate immune evasion has resulted in a continual decline in the protective efficacy of existing vaccines. Therefore, there is a pressing need for a vaccine capable of combating future variants. In this study, we designed new mRNA vaccines, BSCoV05 and BSCoV06, and generated point mutations in the receptor-binding domain (RBD) of the original Wuhan strain to increase their broad-spectrum antiviral activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!