Uridylation emerges as a key modification promoting mRNA degradation in eukaryotes. In addition, uridylation by URT1 prevents the accumulation of excessively deadenylated mRNAs in Arabidopsis. Here, we show that the extent of mRNA deadenylation is controlled by URT1. By using TAIL-seq analysis, we demonstrate the prevalence of mRNA uridylation and the existence, at lower frequencies, of mRNA cytidylation and guanylation in Arabidopsis. Both URT1-dependent and URT1-independent types of uridylation co-exist but only URT1-mediated uridylation prevents the accumulation of excessively deadenylated mRNAs. Importantly, uridylation repairs deadenylated extremities to restore the size distribution observed for non-uridylated oligo(A) tails. In vivo and in vitro data indicate that Poly(A) Binding Protein (PABP) binds to uridylated oligo(A) tails and determines the length of U-extensions added by URT1. Taken together, our results uncover a role for uridylation and PABP in repairing mRNA deadenylated ends and reveal that uridylation plays diverse roles in eukaryotic mRNA metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2016.02.060 | DOI Listing |
Biomolecules
December 2024
Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.
In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.
Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.
View Article and Find Full Text PDFJ Plant Physiol
November 2024
Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C5S7, Canada. Electronic address:
Nucleoside mono-, di- and triphosphates (NMP, NDP, and NTP) and their deoxy-counterparts (dNMP, dNDP, dNTP) are involved in energy metabolism and are the building blocks of RNA and DNA, respectively. The production of NTP and dNTP is carried out by several NMP kinases (NMPK) and NDP kinases (NDPK). All NMPKs are fully reversible and use defined Mg-free and Mg-complexed nucleotides in both directions of their reactions, with Mg controlling the ratios of Mg-free and Mg-complexed reactants.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
December 2024
Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!