Substrate-Trapped Interactors of PHD3 and FIH Cluster in Distinct Signaling Pathways.

Cell Rep

Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK. Electronic address:

Published: March 2016

Amino acid hydroxylation is a post-translational modification that regulates intra- and inter-molecular protein-protein interactions. The modifications are regulated by a family of 2-oxoglutarate- (2OG) dependent enzymes and, although the biochemistry is well understood, until now only a few substrates have been described for these enzymes. Using quantitative interaction proteomics, we screened for substrates of the proline hydroxylase PHD3 and the asparagine hydroxylase FIH, which regulate the HIF-mediated hypoxic response. We were able to identify hundreds of potential substrates. Enrichment analysis revealed that the potential substrates of both hydroxylases cluster in the same pathways but frequently modify different nodes of signaling networks. We confirm that two proteins identified in our screen, MAPK6 (Erk3) and RIPK4, are indeed hydroxylated in a FIH- or PHD3-dependent mechanism. We further determined that FIH-dependent hydroxylation regulates RIPK4-dependent Wnt signaling, and that PHD3-dependent hydroxylation of MAPK6 protects the protein from proteasomal degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805855PMC
http://dx.doi.org/10.1016/j.celrep.2016.02.043DOI Listing

Publication Analysis

Top Keywords

potential substrates
8
substrate-trapped interactors
4
interactors phd3
4
phd3 fih
4
fih cluster
4
cluster distinct
4
distinct signaling
4
signaling pathways
4
pathways amino
4
amino acid
4

Similar Publications

Enzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.

View Article and Find Full Text PDF

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Catalytic asymmetric photocycloaddition reactions mediated by enantioselective radical approaches.

Chem Soc Rev

January 2025

Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.

The use of olefins in the construction of cyclic compounds represents a powerful strategy for advancing the pharmaceutical industry. Photocycloaddition has attracted significant interest from chemists due to its ability to exploit simple and readily available olefins along with their reaction patterns under mild conditions. Moreover, the sustainable and versatile pathways for generating highly reactive intermediates can greatly enrich both substrate diversity and reaction patterns.

View Article and Find Full Text PDF

Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice.

Microbiol Spectr

January 2025

Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.

Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.

View Article and Find Full Text PDF

Unlabelled: APOBEC3 proteins (A3s) play an important role in host innate immunity against viruses and DNA mutations in cancer. A3s-induced mutations in both viral and human DNA genomes vary significantly from non-lethal mutations in viruses to localized hypermutations, such as kataegis in cancer. How A3s are regulated remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!