A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance of electrochemical oxidation process for removal of di (2-ethylhexyl) phthalate. | LitMetric

Di (2-ethylhexyl) phthalate (DEHP) is the most detected and concentrated plasticizer in environment and wastewaters, worldwide. In this study, different operating parameters such as current intensity, treatment time, type of anodes, and supporting electrolytes were tested to optimized the electro-oxidation process (EOP) for the removal of DEHP in the presence of methanol as a dissolved organic matter. Among the anodes, the Nb/BDD showed the best degradation rate of DEHP, at low current intensity of 0.2 A after 90 min of treatment time with a percentage of degradation recorded of 81 %, compared to 70 % obtained with the Ti/IrO2-RuO2. Furthermore, due to the combination of direct and indirect oxidation, the removal of DEHP in the presence of 1 g/L Na2SO4 was higher than NaBr, even though the oxidant production of NaBr was 11.7 mmol/L against 3.5 mmol/L recorded in the presence of sulfate at 0.5 A and after 60 min of electrolysis time. Under optimal condition (current intensity = 0.5 A, time = 120 min, using Nb/BDD anode and Na2SO4 as supporting electrolyte), the removal of 87.2 % of DEHP was achieved. The total cost of 0.106 US$/m(3) of treated water was achieved based on economical optimization of reactor with current intensity of 0.2 A and 1 g/L Na2SO4.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-6304-2DOI Listing

Publication Analysis

Top Keywords

current intensity
12
2-ethylhexyl phthalate
8
treatment time
8
removal dehp
8
dehp presence
8
intensity 02 a
8
1 g/l na2so4
8
dehp
5
performance electrochemical
4
electrochemical oxidation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!