Contractile perturbations downstream of Ca(2+) binding to troponin C, the so-called sarcomere-controlled mechanisms, represent the earliest indicators of energy remodeling in the diseased heart [1]. Central to cellular energy "sensing" is the adenosine monophosphate-activated kinase (AMPK) pathway, which is known to directly target myofilament proteins and alter contractility [2-6]. We previously showed that the upstream AMPK kinase, LKB1/MO25/STRAD, impacts myofilament function independently of AMPK [5]. Therefore, we hypothesized that the LKB1 complex associated with myofilament proteins and that alterations in energy signaling modulated targeting or localization of the LKB1 complex to the myofilament. Using an integrated strategy of myofilament mechanics, immunoblot analysis, co-immunoprecipitation, mass spectroscopy, and immunofluorescence, we showed that 1) LKB1 and MO25 associated with myofibrillar proteins, 2) cellular energy stress re-distributed AMPK/LKB1 complex proteins within the sarcomere, and 3) the LKB1 complex localized to the Z-Disk and interacted with cytoskeletal and energy-regulating proteins, including vinculin and ATP Synthase (Complex V). These data represent a novel role for LKB1 complex proteins in myofilament function and myocellular "energy" sensing in the heart.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899161 | PMC |
http://dx.doi.org/10.1016/j.abb.2016.03.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!