Clinical applications of bacterial glycoproteins.

Expert Rev Proteomics

a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada.

Published: December 2016

There is an ongoing race between bacterial evolution and medical advances. Pathogens have the advantages of short generation times and horizontal gene transfer that enable rapid adaptation to new host environments and therapeutics that currently outpaces clinical research. Antibiotic resistance, the growing impact of nosocomial infections, cancer-causing bacteria, the risk of zoonosis, and the possibility of biowarfare all emphasize the increasingly urgent need for medical research focussed on bacterial pathogens. Bacterial glycoproteins are promising targets for alternative therapeutic intervention since they are often surface exposed, involved in host-pathogen interactions, required for virulence, and contain distinctive glycan structures. The potential exists to exploit these unique structures to improve clinical prevention, diagnosis, and treatment strategies. Translation of the potential in this field to actual clinical impact is an exciting prospect for fighting infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1586/14789450.2016.1166054DOI Listing

Publication Analysis

Top Keywords

bacterial glycoproteins
8
clinical
4
clinical applications
4
bacterial
4
applications bacterial
4
glycoproteins ongoing
4
ongoing race
4
race bacterial
4
bacterial evolution
4
evolution medical
4

Similar Publications

Deciphering the molecular basis of lipoprotein recognition and transport by LolCDE.

Signal Transduct Target Ther

December 2024

Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.

Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes.

View Article and Find Full Text PDF

[Protective effect of K12 against infection in mice].

Nan Fang Yi Ke Da Xue Xue Bao

December 2024

Department of Laboratory Medicine, Hengyang First People's Hospital, Hengyang 421001, China.

Objectives: To investigate the protective effect of the probiotic bacterium K12 (K12) against (Mp) infection in mice.

Methods: Forty male BALB/c mice were randomized into normal control group, K12 treatment group, Mp infection group, and K12 pretreatment prior to Mp infection group. The probiotic K12 was administered daily by gavage for 14 days before Mp infection induced by intranasal instillation of Mp.

View Article and Find Full Text PDF

The Integrin Receptors: From Discovery to Structure to Medicines.

Immunol Rev

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Innate immune cells perform vital tasks in detecting, seeking, and eliminating invading pathogens, thus ensuring host survival. However, loss of function of these cells or their overactive response to tissue injury often causes serious ailments. It is, therefore, crucial to understand at a basic level how these cells function in health and disease.

View Article and Find Full Text PDF

Four salt-tolerant and aromatics degrading strains used in this study were isolated from polluted technogenic soil on the territory of the Verkhnekamsk potash deposit (Russia). The strains were aerobic, Gram-stain-positive, non-motile, non-endospore-forming irregular rods, exhibiting a marked rod-coccus growth cycle. They contained lysine-based peptidoglycan, teichulosonic acid and poly(glycosyl phosphate) polymers in the cell walls.

View Article and Find Full Text PDF

The C-terminal α-helix is crucial for the activity of the bacterial ABC transporter BmrA.

J Biol Chem

December 2024

Department of Chemistry - Biochemistry, Johannes Gutenberg-University, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg-University, 55128 Mainz, Germany. Electronic address:

ABC transporters are membrane integral proteins that consist of a transmembrane (TMD) and nucleotide-binding domain (NBD). Two monomers (half-transporters) of the Bacillus subtilis ABC transporter BmrA (Bacillus multidrug-resistance ATP) dimerize to build a functional full-transporter. As all ABC exporters, BmrA uses the free energy of ATP hydrolysis to transport substrate molecules across the cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!