A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of fully-automated atlas-based segmentation of novel oral mucosal surface organ-at-risk. | LitMetric

Background And Purpose: Current oral mucositis normal tissue complication probability models, based on the dose distribution to the oral cavity volume, have suboptimal predictive power. Improving the delineation of the oral mucosa is likely to improve these models, but is resource intensive. We developed and evaluated fully-automated atlas-based segmentation (ABS) of a novel delineation technique for the oral mucosal surfaces.

Material And Methods: An atlas of mucosal surface contours (MSC) consisting of 46 patients was developed. It was applied to an independent test cohort of 10 patients for whom manual segmentation of MSC structures, by three different clinicians, and conventional outlining of oral cavity contours (OCC), by an additional clinician, were also performed. Geometric comparisons were made using the dice similarity coefficient (DSC), validation index (VI) and Hausdorff distance (HD). Dosimetric comparisons were carried out using dose-volume histograms.

Results: The median difference, in the DSC and HD, between automated-manual comparisons and manual-manual comparisons were small and non-significant (-0.024; p=0.33 and -0.5; p=0.88, respectively). The median VI was 0.086. The maximum normalised volume difference between automated and manual MSC structures across all of the dose levels, averaged over the test cohort, was 8%. This difference reached approximately 28% when comparing automated MSC and OCC structures.

Conclusions: Fully-automated ABS of MSC is suitable for use in radiotherapy dose-response modelling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868144PMC
http://dx.doi.org/10.1016/j.radonc.2016.02.022DOI Listing

Publication Analysis

Top Keywords

fully-automated atlas-based
8
atlas-based segmentation
8
oral mucosal
8
mucosal surface
8
oral cavity
8
test cohort
8
msc structures
8
oral
6
msc
5
assessment fully-automated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!