Design, synthesis of phenstatin/isocombretastatin-oxindole conjugates as antimitotic agents.

Bioorg Med Chem

Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Catalytic Chemistry Chair, Chemistry Department College of Science, King Saud University, Riyadh, Saudi Arabia. Electronic address:

Published: April 2016

A series of phenstatin/isocombretastatin-oxindole conjugates was synthesized and tested for their cytotoxic activity against five human cancer cells such as prostate (DU-145), lung (A549), colon (HT-29), breast (MCF-7), liver (HepG2) cancer cells with IC50 values ranging from 0.049 to 38.90 μM. Amongst them, two conjugates (5c and 5d) showed broad spectrum of antiproliferative efficacy on lung cancer cells with an IC50 value of 79 nM and 93 nM, respectively, whereas on colon cancer cells with an IC50 values 45 nM and 49 nM, respectively. In addition, cell cycle assay revealed that these conjugates (5c and 5d) arrest at the G2/M phase and leads to apoptotic cell death which was confirmed by Annexin V-FITC and mitochondrial membrane depolarization. Further, the tubulin polymerization assay analysis results suggest that these conjugates particularly 5c and 5d exhibit significant inhibitory effect on the tubulin assembly with an IC50 value of 1.23 μM and 1.01 μM, respectively. Molecular docking studies indicated that these compounds (5c and 5d) occupy the colchicine binding site of the tubulin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2016.02.047DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
cells ic50
12
phenstatin/isocombretastatin-oxindole conjugates
8
ic50 values
8
conjugates
5
design synthesis
4
synthesis phenstatin/isocombretastatin-oxindole
4
conjugates antimitotic
4
antimitotic agents
4
agents series
4

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!