Modern stem cell research, as well as other fields of contemporary biology involves quantitative sciences in many ways. Identifying candidates for key differentiation or reprogramming factors, tracing global transcriptome changes, or finding drugs is now broadly involves bioinformatics and biostatistics. However, the next key step, understanding the underlying reasons and establishing causal links leading to differentiation or reprogramming requires qualitative and quantitative biological models describing complex biological systems. Currently, quantitative modeling is a challenging science, capable to deliver rather modest results or predictions. What model types are the most popular and what features of stem cell behavior they are capturing? What new insights do we expect from the computational modeling of stem cells in the foreseeable future? Current review attempts to approach these essential questions by considering published quantitative models and solutions emerging in the area of stem cell research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.ctdb.2015.11.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!