Immune complex (IC) deposition in the glomerular basement membrane (GBM) is a key early pathogenic event in lupus nephritis (LN). The clarification of the mechanisms behind IC deposition will enable targeted therapy in the future. Circulating cell-derived microparticles (MPs) have been proposed as major sources of extracellular autoantigens and ICs and triggers of autoimmunity in LN. The overabundance of galectin-3-binding protein (G3BP) along with immunoglobulins and a few other proteins specifically distinguish circulating MPs in patients with systemic lupus erythematosus (SLE), and this is most pronounced in patients with active LN. G3BP co-localizes with deposited ICs in renal biopsies from LN patients supporting a significant presence of MPs in the IC deposits. G3BP binds strongly to glomerular basement membrane proteins and integrins. Accordingly, MP surface proteins, especially G3BP, may be essential for the deposition of ICs in kidneys and thus for the ensuing formation of MP-derived electron dense structures in the GBM, and immune activation in LN. This review focuses on the notion of targeting surface molecules on MPs as an entirely novel treatment strategy in LN. By targeting MPs, a double hit may be achieved by attenuating both the autoantigenic fueling of immune complexes and the triggering of the adaptive immune system. Thereby, early pathogenic events may be blocked in contrast to current treatment strategies that primarily target and modulate later events in the cellular and humoral immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.autrev.2016.03.009 | DOI Listing |
Int J Mol Sci
January 2025
Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Department of Neurology, Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, 1600 NW 10th Ave RMSB #7046, Miami, FL, 33136, USA.
Background: Current therapies to treat excessive bleeding are associated with significant complications, which may outweigh their benefits. Red blood cell-derived microparticles (RMPs) are a promising hemostatic agent. Previous studies demonstrated that they reduce bleeding in animal models, correct coagulation defects in patient blood, and have an excellent safety profile.
View Article and Find Full Text PDFMol Pharm
January 2025
National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Traditional chemotherapy often encounters failure attributed to drug resistance mediated by tumor-repopulating cells (TRCs) and chemotherapy-triggered immune suppression. The effective inhibition of TRCs and the mitigation of drug-induced immune suppression are pivotal for the successful chemotherapy. Here, TRC-derived microparticles (3D-MPs), characterized by excellent tumor-targeting and high TRC uptake properties, are utilized to deliver metformin and the chemotherapeutic drug doxorubicin ((DOX+Met)@3D-MPs).
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2024
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028, China Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine Nanjing 210028, China.
Tumor metastasis is the main cause of death in clinical patients. The proposal of the pre-metastatic microenvironment hypothesis offers a new research direction for tumor metastasis. Targeting and inhibiting the activation of the stimulator of interferon genes(STING) signals by tumor cell-derived microparticles may help reduce tumor metastasis.
View Article and Find Full Text PDFJ Vis Exp
November 2024
Department of Haematology, University Hospital of Bordeaux; Inserm U1034, Biology of Cardiovascular Disease.
Activated platelets promote coagulation primarily by exposing the procoagulant phospholipid phosphatidylserine (PS) on their outer membrane surfaces and releasing PS-expressing microvesicles that retain the original membrane architecture and cytoplasmic components of their originating cells. The accessibility of phosphatidylserine facilitates the binding of major coagulation factors, significantly amplifying the catalytic efficiency of coagulation enzymes, while microvesicle release acts as a pivotal mediator of intercellular signaling. Procoagulant platelets play a crucial role in clot stabilization during hemostasis, and their increased proportion in the bloodstream correlates with an increased risk of thrombosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!