Development of a surrogate matrix for cerebral spinal fluid for liquid chromatography/mass spectrometry based analytical methods.

Rapid Commun Mass Spectrom

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA, 30602-2352, USA.

Published: April 2016

Rationale: In recent years, several liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods have been reported for the quantitative determination of drugs and metabolites in cerebral spinal fluid (CSF). Artificial CSF (aCSF) is often used as a surrogate for preparing calibration curves and quality control samples in these methods. However, aCSF does not accurately represent the composition of real CSF because it is missing all of the proteins and lipids, which may alter the electrospray ionization (ESI) response when performing LC/MS/MS analyses. In the current study we compared the mass spectral response of several compounds with a range of physiochemical properties in aCSF (essentially a mixture of salts and buffers), diluted plasma (ranging from 1:5 to 1:200) and real CSF to find the best surrogate for CSF in LC/MS/MS methods.

Methods: A number of analytes from polar to non-polar, high protein binding to low protein binding, employing different sample preparation methods, were prepared in diluted plasma, actual CSF or aCSF and tested using LC/MS/MS. The analytes included cotinine and its metabolites, quetiapine, norquetiapine, chlorpromazine, efavirenz and lamivudine. The similarity of MS responses from these compounds in aCSF and diluted plasma to CSF was assessed by comparing the slopes of the calibration curves generated from using linear regression modeling.

Results: For all compounds, the lowest percent difference in response ratio (0 to 17%) was observed from 1:200 diluted plasma. Our results indicated that, irrespective of the inherent physiochemical properties of the analytes or the method of sample preparation, 1:200 diluted plasma performed as the best surrogate for CSF in LC/MS/MS methods.

Conclusions: The percent difference in response ratio has been established to demonstrate how different compounds behave between CSF, aCSF and dilute plasma. Although among the compounds tested some of them showed a very similar MS response in actual and aCSF, there were analytes that demonstrated significant differences in ESI-MS signal when sprayed from these two matrices. However, even in such cases, 1:200 diluted plasma generated results with no significant difference from CSF. Therefore, we recommend that in order to develop robust and dependable bioanalytical LC/MS methods from CSF samples, it is more appropriate to prepare calibration curves and quality control samples in diluted plasma instead of aCSF. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7509DOI Listing

Publication Analysis

Top Keywords

diluted plasma
28
csf acsf
12
calibration curves
12
1200 diluted
12
csf
11
cerebral spinal
8
spinal fluid
8
acsf
8
curves quality
8
quality control
8

Similar Publications

Neurofilament light chain - Can it be measured in urine?

Clin Chim Acta

January 2025

Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul Jensens Boulevard 99 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University 8000 Aarhus C, Denmark.

Objective: This exploratory study investigates if neurofilament light chain (NfL) is excreted in the urine and whether this depends on plasma NfL (pNfL) levels and kidney function in terms of eGFR and U-albumin-creatinine ratio (uACR).

Methods: Using a computer algorithm, we identified excess urine and plasma from routine testing of uACR and eGFR in patients 45-50 years old. Up to 17 paired urine-plasma samples in each of six categories of kidney function defined by uACR and eGFR were analysed for NfL, and the urinary NfL-creatinine ratio (uNCR) was calculated to correct for urine dilution.

View Article and Find Full Text PDF

Background: Hemodialysis may excessively remove valuable solutes. Untargeted metabolomics data from a prior study suggested that ergothioneine was depleted in the plasma of hemodialysis subjects. Ergothioneine is a dietary-derived solute with antioxidant properties.

View Article and Find Full Text PDF

Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!