Sp5 and Sp8 recruit β-catenin and Tcf1-Lef1 to select enhancers to activate Wnt target gene transcription.

Proc Natl Acad Sci U S A

Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD;

Published: March 2016

The ancient, highly conserved, Wnt signaling pathway regulates cell fate in all metazoans. We have previously shown that combined null mutations of the specificity protein (Sp) 1/Klf-like zinc-finger transcription factors Sp5 and Sp8 (i.e., Sp5/8) result in an embryonic phenotype identical to that observed when core components of the Wnt/β-catenin pathway are mutated; however, their role in Wnt signal transduction is unknown. Here, we show in mouse embryos and differentiating embryonic stem cells that Sp5/8 are gene-specific transcriptional coactivators in the Wnt/β-catenin pathway. Sp5/8 bind directly to GC boxes in Wnt target gene enhancers and to adjacent, or distally positioned, chromatin-bound T-cell factor (Tcf) 1/lymphoid enhancer factor (Lef) 1 to facilitate recruitment of β-catenin to target gene enhancers. Because Sp5 is itself directly activated by Wnt signals, we propose that Sp5 is a Wnt/β-catenin pathway-specific transcript on factor that functions in a feed-forward loop to robustly activate select Wnt target genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822596PMC
http://dx.doi.org/10.1073/pnas.1519994113DOI Listing

Publication Analysis

Top Keywords

wnt target
12
target gene
12
sp5 sp8
8
wnt/β-catenin pathway
8
gene enhancers
8
wnt
6
sp5
4
sp8 recruit
4
recruit β-catenin
4
β-catenin tcf1-lef1
4

Similar Publications

Nonylphenol (NP) is a common environmental contaminant and endocrine disruptor. Our previous research demonstrated that NP could promote the proliferation and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells; however, the specific mechanism remains unclear. miRNA sequencing revealed that NP upregulated the expression levels of microRNA(miR)-151a-3p in CRC.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) has become a worldwide health problem and the incidence rate and mortality of CKD have been rising. Renal fibrosis (RF) is the final common pathological feature of almost all kinds of CKD and Epithelial-mesenchymal transition (EMT) is the predominant stage of RF. β-catenin is a key component of the Wnt signaling pathway, which has been fully proven to promote EMT.

View Article and Find Full Text PDF

The concept that fibroblasts are critical mediators of inflammation is an emerging paradigm. In rheumatoid arthritis (RA), they are the main producers of IL-6 as well as a host of other cytokines and chemokines. Their pathologic activation also directly causes cartilage and bone degradation.

View Article and Find Full Text PDF

Targeting ROR2 homooligomerization disrupts ROR2-dependent signaling and suppresses stem-like cell properties of human breast adenocarcinoma.

iScience

January 2025

Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

Breast cancer stem-like cells (CSCs) are enriched following treatment with chemotherapy, and posited as having a high level of plasticity and enhanced tumor-initiation capacity, which can enable cancer relapse. Here, we show that such features are shared by breast cancer (BCA) cells that express receptor tyrosine kinase-like orphan receptor (ROR2), which is expressed primarily during embryogenesis and by various cancers. We find that Wnt5a can induce ROR2 homooligomerization to activate noncanonical Wnt signaling and enhance tumor-initiation capacity of BCA cells.

View Article and Find Full Text PDF

CDK14 regulates the development and repair of lung.

Cell Death Discov

January 2025

Institutes of physical science and information technology, Anhui University, Hefei, Anhui, 230601, China.

Cyclin-dependent kinases (CDK) 14 regulates cell cycle, tumor expansion by influencing the downstream targets of the canonical Wnt signaling pathway. However, the function of CDK14 during organ development and regeneration has not been investigated in genetically-modified animals. Here, we found that genetic ablation of Cdk14 influenced pulmonary vascular endothelial cells and alveolar epithelial cells during mice embryonic development as well as repair of lung after bleomycin or lipopolysaccharide induced injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!