Cell migration is a fundamental biological phenomenon during which cells sense their surroundings and respond to different types of signals. In presence of durotaxis, cells preferentially crawl from soft to stiff substrates by reorganizing their cytoskeleton from an isotropic to an anisotropic distribution of actin filaments. In the present paper, we propose a Cellular Potts Model to simulate single cell migration over flat substrates with variable stiffness. We have tested five configurations: (i) a substrate including a soft and a stiff region, (ii) a soft substrate including two parallel stiff stripes, (iii) a substrate made of successive stripes with increasing stiffness to create a gradient and (iv) a stiff substrate with four embedded soft squares. For each simulation, we have evaluated the morphology of the cell, the distance covered, the spreading area and the migration speed. We have then compared the numerical results to specific experimental observations showing a consistent agreement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2016.02.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!