A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

1,2-Dichlorobenzene affects the formation of the phosphoenzyme stage during the catalytic cycle of the Ca(2+)-ATPase from sarcoplasmic reticulum. | LitMetric

1,2-Dichlorobenzene affects the formation of the phosphoenzyme stage during the catalytic cycle of the Ca(2+)-ATPase from sarcoplasmic reticulum.

BMC Biochem

Departamento de Ciencias Químico Biológicas, Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Plutarco Elías Calles #1210 Fovissste Chamizal, Ciudad Juárez, Chihuahua, C.P. 32310, Mexico.

Published: March 2016

Background: 1,2-Dichlorobenzene (1,2-DCB) is a benzene-derived molecule with two Cl atoms that is commonly utilized in the synthesis of pesticides. 1,2-DCB can be absorbed by living creatures and its effects on naturally-occurring enzymatic systems, including the effects on Ca(2+)-ATPases, have been poorly studied. Therefore, we aimed to study the effect of 1,2-DCB on the Ca(2+)-ATPase from sarcoplasmic reticulum (SERCA), a critical regulator of intracellular Ca(2+) concentration.

Results: Concentrations of 0.05-0.2 mM of 1,2-DCB were able to stimulate the hydrolytic activity of SERCA in a medium-containing Ca(2+)-ionophore. At higher concentrations (0.25-0.75 mM), 1,2-DCB inhibited the ATP hydrolysis to ~80 %. Moreover, ATP hydrolysis and Ca(2+) uptake in a medium supported by K-oxalate showed that starting at 0.05 mM,1,2-DCB was able to uncouple the ratio of hydrolysis/Ca(2+) transported. The effect of this compound on the integrity of the SR membrane loaded with Ca(2+) remained unaffected. Finally, the analysis of phosphorylation of SERCA by [γ-(32)P]ATP, starting under different conditions at 0° or 25 °C showed a reduction in the phosphoenzyme levels by 1,2-DCB, mostly at 0 °C.

Conclusions: The temperature-dependent decreased levels of phosphoenzyme by 1,2-DCB could be due to the acceleration of the dephosphorylation mechanism - E2P · Ca2 state to E2 and Pi, which explains the uncoupling of the ATP hydrolysis from the Ca(2+) transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788898PMC
http://dx.doi.org/10.1186/s12858-016-0061-1DOI Listing

Publication Analysis

Top Keywords

atp hydrolysis
12
ca2+-atpase sarcoplasmic
8
sarcoplasmic reticulum
8
hydrolysis ca2+
8
12-dcb
7
12-dichlorobenzene formation
4
formation phosphoenzyme
4
phosphoenzyme stage
4
stage catalytic
4
catalytic cycle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!