Optical devices for measuring protoporphryin IX (PpIX) fluorescence in tissue are routinely validated by measurements in optical phantoms. Yet there exists limited data to form a consensus on the recipe for phantoms that both mimic the optical properties found in tissue and yield a reliable and stable relationship between PpIX concentration and the fluorescence remission intensity. This study characterizes the influence of multiple phantom components on PpIX fluorescence emission intensity, using Intralipid as the scattering source, bovine whole blood as the background absorber, and Tween as a surfactant to prevent PpIX aggregation. Optical measurements showed a linear proportionality (r > 0.99) between fluorescence intensity and PpIX concentration (0.1 to 10 μg/mL) over a range of Intralipid (1 to 2%) and whole blood (0.5 to 3%) for phantoms containing low surfactant (≤ 0.1%), with fluorescence intensities and scattering and absorption properties stable for 5 h after mixing. The role of surfactant in PpIX phantoms was found to be complex, as aggregation was evident in aqueous nonturbid phantoms with no surfactant (0% Tween), and avoided in phantoms containing Intralipid as the scattering source with no additional or low amounts of added surfactant (≤ 0.1% Tween). Conversely, phantoms containing higher surfactant content (>0.1% Tween) and whole blood showed interactions that distorted the fluorescence emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994807 | PMC |
http://dx.doi.org/10.1117/1.JBO.21.3.035003 | DOI Listing |
Appl Radiat Isot
January 2025
Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh; Department of Physics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:
This review explores the establishment of diagnostic reference levels (DRLs) for pediatric brain computed tomography (CT) examinations in Saudi Arabia and compares them with nine other countries. An extensive search strategy was employed across various databases, resulting in the inclusion of 9 studies. The studies included patient-based and phantom-based investigations into DRLs, highlighting variations across age groups and countries.
View Article and Find Full Text PDFWhole-body PET imaging is often hindered by respiratory motion during acquisition, causing significant degradation in the quality of reconstructed activity images. An additional challenge in PET/CT imaging arises from the respiratory phase mismatch between CT-based attenuation correction and PET acquisition, leading to attenuation artifacts. To address these issues, we propose two new, purely data-driven methods for the joint estimation of activity, attenuation, and motion in respiratory self-gated TOF PET.
View Article and Find Full Text PDFAnaesthesia
January 2025
Department of Anaesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
Introduction: Ultrasound-guided regional anaesthesia enhances pain control, patient outcomes and lowers healthcare costs. However, teaching this skill effectively presents challenges with current training methods. Simulation-based medical education offers advantages over traditional methods.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Chow Yei Ching 506, Hong Kong, 999077, HONG KONG.
. The propagation speed of a shear wave, whether externally or internally induced, in biological tissues is directly linked to the tissue's stiffness. The group shear wave speed (SWS) can be estimated using a class of time-of-flight (TOF) methods in the time-domain or phase speed-based methods in the frequency domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!