Background: The safety of perioperative hyperoxia is currently unclear. Previous studies in patients undergoing coronary artery bypass surgery suggest reduced myocardial damage when avoiding extreme perioperative hyperoxia (>400 mmHg). In this study we investigated whether an oxygenation strategy from moderate hyperoxia to a near-physiological oxygen tension reduces myocardial damage and improves haemodynamics, organ dysfunction and oxidative stress.
Methods: This was a single-blind, single-centre, open-label, randomised controlled trial in patients undergoing elective coronary artery bypass surgery. Fifty patients were randomised to a partial pressure of oxygen in arterial blood (PaO2) target of 200-220 mmHg during cardiopulmonary bypass and 130-150 mmHg during intensive care unit (ICU) admission (control group) versus lower targets of 130-150 mmHg during cardiopulmonary bypass and 80-100 mmHg at the ICU (conservative group). Primary outcome was myocardial injury (CK-MB and Troponin-T) at ICU admission and 2, 6 and 12 hours thereafter.
Results: Weighted PaO2 during cardiopulmonary bypass was 220 mmHg (interquartile range (IQR) 211-233) vs. 157 (151-162) in the control and conservative group, respectively (P < 0.0001). During ICU admission, weighted PaO2 was 107 mmHg (86-141) vs. 90 (84-98) (P = 0.03), respectively. Area under the curve of CK-MB was median 23.5 μg/L/h (IQR 18.4-28.1) vs. 21.5 (15.8-26.6) (P = 0.35) and 0.30 μg/L/h (0.25-0.44) vs. 0.39 (0.24-0.43) (P = 0.81) for Troponin-T. Cardiac index, systemic vascular resistance index, creatinine, lactate and F2-isoprostane levels were not different between groups.
Conclusions: Compared to moderate hyperoxia, a near-physiological oxygen strategy does not reduce myocardial damage in patients undergoing coronary artery bypass surgery. Conservative oxygen administration was not associated with increased lactate levels or hypoxic events.
Trial Registration: Netherlands Trial Registry NTR4375, registered on 30 January 2014.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788916 | PMC |
http://dx.doi.org/10.1186/s13054-016-1240-6 | DOI Listing |
Diabetes
January 2025
Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Clonal haematopoiesis of indeterminate potential (CHIP) is associated with macrovascular diseases, including coronary artery disease and stroke. However, the effects of CHIP on microvascular complication have not been evaluated in individuals with type 2 diabetes (T2D). This study included 20,712 T2D participants without prevalent diabetic microvascular complication (DMCs) and hematologic malignancy at baseline.
View Article and Find Full Text PDFJAMA Pediatr
January 2025
Department of Cardiology, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts.
Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.
Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.
Rheumatol Int
January 2025
Copenhagen Research Center for Autoimmune Connective Tissue Diseases (COPEACT), Copenhagen University Hospital, Rigshospitalet, Denmark.
To investigate if progression of coronary artery calcification (CAC) in patients with systemic lupus erythematosus (SLE) is associated with renal and traditional cardiovascular risk factors as well as incidence of myocardial infarctions. CAC progression was evaluated by cardiac computed tomography (CT) at baseline and after 5 years. Multivariable Poisson regression was applied to investigate associations between CAC progression and baseline values for traditional cardiovascular risk factors, CAC, SLE disease duration, lupus nephritis, and renal function.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Artificial Intelligence Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.
Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radiation exposure and the need for specialized personnel. This study aims to develop an artificial intelligence (AI) method to automatically detect CAC from non-gated, freely-breathing, low-dose CT images obtained from positron emission tomography/computed tomography scans.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Third Department of Medicine, General University Hospital and First Faculty of Medicine, Charles University, 121 08, Prague, Czech Republic.
Purpose Of Review: In recent years, the terms "metabolic associated fatty liver disease-MAFLD" and "metabolic dysfunction-associated steatotic liver disease-MASLD" were introduced to improve the encapsulation of metabolic dysregulation in this patient population, as well as to avoid the negative/stigmatizing terms "non-alcoholic" and "fatty".
Recent Findings: There is evidence suggesting links between MASLD and coronary heart disease (CHD), heart failure (HF), atrial fibrillation (AF), stroke, peripheral artery disease (PAD) and chronic kidney disease (CKD), although the data for HF, AF, stroke and PAD are scarcer. Physicians should consider the associations between MASLD and CV diseases in their daily practice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!