2n pollen formed by FDR in citrus. The Japanese local citrus cultivar, Nishiuchi Konatsu (Citrus tamurana hort. ex Tanaka; NK hereafter), has the ability to produce unreduced 2n pollen grains, allowing generation of polyploid progenies via sexual polyploidization. In this study, we developed a method of single-pollen genotyping for citrus and applied it to the analysis of transmission of heterozygosity in NK 2n pollen grains. Heterozygosity transmission was expressed as the percentage inheritance of a set of heterozygous alleles from the parent to the 2n gamete. The pathway of 2n pollen development was investigated by applying the observed heterozygosity transmission and genetic distance to two different map functions, for first division restitution (FDR) and second division restitution (SDR). The fit of the values observed for both functions was calculated, while virtually moving the centromere position. We screened for six heterozygous SSR (codominant microsatellite marker loci) in NK, all of which were expected to lie within the same linkage group. Pollen germination prior to DNA extraction was essential for this work, and 6-h incubation proved to be optimal for subsequent PCR amplification. Single-pollen genotyping unreduced NK 2n pollen grains revealed that heterozygosity transmission exceeded 50 % in all six alleles, and fitness tests indicated that the FDR map function better fitted the heterozygosity transmission observed rather than the SDR function. Our data thus strongly indicate that 2n pollen in NK is a result of first division restitution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00497-016-0277-7DOI Listing

Publication Analysis

Top Keywords

heterozygosity transmission
16
single-pollen genotyping
12
unreduced pollen
12
pollen grains
12
division restitution
12
pollen
8
citrus tamurana
8
nishiuchi konatsu
8
citrus
5
transmission
5

Similar Publications

Gene drive-based population suppression in the malaria vector Anopheles stephensi.

Nat Commun

January 2025

Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.

Gene drives are alleles that can bias the inheritance of specific traits in target populations for the purpose of modification or suppression. Here, we construct a homing suppression drive in the major urban malaria vector Anopheles stephensi targeting the female-specific exon of doublesex, incorporating two gRNAs and a nanos-Cas9 to reduce functional resistance and improve female heterozygote fitness. Our results show that the drive was recessive sterile in both females and males, with various intersex phenotypes in drive homozygotes.

View Article and Find Full Text PDF

Genomic analyses reveal high diversity and rapid evolution of within a neonatal intensive care unit in Delhi, India.

Antimicrob Agents Chemother

January 2025

Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.

causes life-threatening infections in immunocompromised hosts, including hospitalized neonates. This pathogen is intrinsically resistant to fluconazole, while uncommon strains resistant to multiple antifungal drugs, including voriconazole, amphotericin B, and echinocandins, have also been reported from healthcare environments. Thus, understanding how spread, persist, and adapt to healthcare settings could help us develop better infection management strategies.

View Article and Find Full Text PDF

Introduction: Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and deletions), and SNP barcodes to provide population genetics estimates of and parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites.

View Article and Find Full Text PDF

Background: Malaria is a significant public health challenge in Uganda, with Plasmodium falciparum (P. falciparum) responsible for most of malaria infections. The high genetic diversity and multiplicity of infection (MOI) associated with P.

View Article and Find Full Text PDF

The establishment of a productive dengue virus (DENV) infection in the midgut epithelial cells of is critical for the viral transmission cycle. The hypothesis that DENV virions interact directly with specific mosquito midgut proteins was explored. We found that DENV serotype 2 (DENV2) pretreated with trypsin interacted with a single 31 kDa protein, identified as AAEL011180 by protein mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!