Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accuracy of taxonomic identifications is crucial to data quality in online repositories of species occurrence data, such as the Global Biodiversity Information Facility (GBIF), which have accumulated several hundred million records over the past 15 years. These data serve as basis for large scale analyses of macroecological and biogeographic patterns and to document environmental changes over time. However, taxonomic identifications are often unreliable, especially for non-vascular plants and fungi including lichens, which may lack critical revisions of voucher specimens. Due to the scale of the problem, restudy of millions of collections is unrealistic and other strategies are needed. Here we propose to use verified, georeferenced occurrence data of a given species to apply predictive niche modeling that can then be used to evaluate unverified occurrences of that species. Selecting the charismatic lichen fungus, Usnea longissima, as a case study, we used georeferenced occurrence records based on sequenced specimens to model its predicted niche. Our results suggest that the target species is largely restricted to a narrow range of boreal and temperate forest in the Northern Hemisphere and that occurrence records in GBIF from tropical regions and the Southern Hemisphere do not represent this taxon, a prediction tested by comparison with taxonomic revisions of Usnea for these regions. As a novel approach, we employed Principal Component Analysis on the environmental grid data used for predictive modeling to visualize potential ecogeographical barriers for the target species; we found that tropical regions conform a strong barrier, explaining why potential niches in the Southern Hemisphere were not colonized by Usnea longissima and instead by morphologically similar species. This approach is an example of how data from two of the most important biodiversity repositories, GenBank and GBIF, can be effectively combined to remotely address the problem of inaccuracy of taxonomic identifications in occurrence data repositories and to provide a filtering mechanism which can considerably reduce the number of voucher specimens that need critical revision, in this case from 4,672 to about 100.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788202 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151232 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!