A critical requirement of an efficient cognitive system is the selection and prioritization of relevant information. This occurs when selecting specific items from our sensory inputs, which then receive preferential status at subsequent levels of processing. Many everyday tasks also require us to select internal representations, such as a relevant item from memory. We show that both of these types of search are underpinned by the spatiotopic activation of sensory codes, using both fMRI and MEG data. When individuals searched for perceived and remembered targets, the MEG data highlighted a sensor level electrophysiological effect that reflects the contralateral organization of the visual system-namely, the N2pc. The fMRI data were used to identify a network of frontoparietal areas common to both types of search, as well as the early visual areas activated by the search display. We then combined fMRI and MEG data to explore the temporal dynamics of functional connections between the frontoparietal network and the early visual areas. Searching for a target item resulted in significantly enhanced phase-phase coupling between the frontoparietal network and the visual areas contralateral to the perceived or remembered location of that target. This enhancement of spatially specific phase-phase coupling occurred before the N2pc effect and was significantly associated with it on a trial-by-trial basis. The combination of these two imaging modalities suggests that perceptual and working memory search are underpinned by the synchronization of a frontoparietal network and the relevant sensory cortices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/jocn_a_00952 | DOI Listing |
Conscious Cogn
January 2025
Humane Technology Lab, Catholic University of Sacred Heart, Milan, Italy; Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano IRCCS, Milan, Italy. Electronic address:
Psychedelic drugs offer valuable insights into consciousness, but disentangling their causal effects on perceptual and high-level cognition is nontrivial. Technological advances in virtual reality (VR) and machine learning have enabled the immersive simulation of visual hallucinations. However, comprehensive experimental data on how these simulated hallucinations affects high-level human cognition is lacking.
View Article and Find Full Text PDFHear Res
December 2024
Leibniz Institute for Neurobiology, Research Group Comparative Neuroscience, Magdeburg, Germany; Department of Psychology, Lancaster University, Lancaster, UK.
Adaptation is the attenuation of a neuronal response when a stimulus is repeatedly presented. The phenomenon has been linked to sensory memory, but its exact neuronal mechanisms are under debate. One defining feature of adaptation is its lifetime, that is, the timespan over which the attenuating effect of previous stimulation persists.
View Article and Find Full Text PDFHypertens Res
January 2025
Department of Precision Nutrition for Dairy Foods, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
The prevalence of hypertension in Japan remains high, owing to the high salt content of the typical Japanese diet. Dairy-based foods may reduce blood pressure and hypertension risk. However, dairy consumption is low in Japan, and the relationships between dairy intake and blood pressure or the mechanisms by which dairy products affect blood pressure are not fully understood.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
Introduction: Farms are significant hotspots for the dissemination of antibiotic-resistant bacteria and genes (ARGs) into the environment and directly to humans. The prevalence of ARGs on farms underscores the need for effective strategies to reduce their spread. This study aimed to evaluate the impact of a guideline on "best practices for farming" aimed at reducing the dissemination of antibiotic resistance.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
Accurate preoperative mapping is crucial for maximizing tumor removal while minimizing damage to critical brain functions during brain tumor surgery. Navigated transcranial magnetic stimulation (nTMS), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) are established methods for assessing motor and language function. Following PRISMA guidelines, this systematic review analyzes the reliability, clinical utility, and accessibility of these techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!