AI Article Synopsis

  • UV radiation triggers inflammation and immune responses in skin, with calcium ion channels like TRPV1 and ORAI1 playing roles in skin conditions such as pigmentation and wrinkles.
  • Research on Cyperus rotundus, known for treating inflammatory diseases, evaluates its effects on these ion channels and finds that valencene from this plant significantly inhibits their activity.
  • The study reveals that valencene reduces melanin production in melanoma cells after UV exposure, suggesting potential uses in therapies for UV-induced skin damage and photoaging.

Article Abstract

Ultraviolet (UV) radiation deeply penetrates skin and causes inflammation and pigmentary changes and triggers immune responses. Furthermore, accumulating evidence suggests that calcium ion channels, such as TRPV1 and ORAI1, mediate diverse dermatological processes including melanogenesis, skin wrinkling, and inflammation. The rhizomes of Cyperus rotundus have been used to treat inflammatory diseases including dermatitis. However, their effects on UV-induced photoaging-related ion channels remain unknown. Therefore, this study was undertaken to evaluate the antagonistic effects of C. rotundus extract and their constituents on TRPV1 and ORAI1 channels. Electrophysiological analysis revealed that valencene (1) isolated from the hexane fraction potently inhibited capsaicin-induced TRPV1 and ORAI1 currents at 90 μM (69 ± 15% and 97 ± 2% at -60 and -120 mV, respectively). The inhibitory effect of 1 on cytoplasmic Ca(2+) concentrations in response to ORAI1 activation (85 ± 2% at 50 μM) was also confirmed. Furthermore, 1 concentration-dependently decreased the melanin content after UVB irradiation in murine B16F10 melanoma cells by 82.66 ± 2.14% at 15 μg/mL. These results suggest that C. rotundus rhizomes have potential therapeutic effects on UV-induced photoaging and indicate that the therapeutic and cosmetic applications of 1 are worth further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.5b01127DOI Listing

Publication Analysis

Top Keywords

ion channels
12
trpv1 orai1
12
rhizomes cyperus
8
cyperus rotundus
8
photoaging-related ion
8
b16f10 melanoma
8
melanoma cells
8
effects uv-induced
8
valencene rhizomes
4
rotundus
4

Similar Publications

Structural dynamics of a designed peptide pore under an external electric field.

Biophys Chem

December 2024

Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Computational Biophysics Research Group, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data.

View Article and Find Full Text PDF

Patient-derived NMDAR mAbs combined with single-particle cryo-electron microscopy reveal multiple GluN1 epitopes and distinct functional effects.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) ion channels are members of the cyclic nucleotide-binding family and are crucial for regulating cellular automaticity in many excitable cells. HCN channel activation contributes to pain perception, and propofol, a widely used anesthetic, acts as an analgesic by inhibiting the voltage-dependent activity of HCN channels. However, the molecular determinants of propofol action on HCN channels remain unknown.

View Article and Find Full Text PDF

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!