In vivo animal model systems, and in particular mouse models, have evolved into powerful and versatile scientific tools indispensable to basic and translational research in the field of transplantation medicine. A vast array of reagents is available exclusively in this setting, including mono- and polyclonal antibodies for both diagnostic and interventional applications. In addition, a vast number of genotyped, inbred, transgenic, and knock out strains allow detailed investigation of the individual contributions of humoral and cellular components to the complex interplay of an immune response and make the mouse the gold standard for immunological research. Vascularized Composite Allotransplantation (VCA) delineates a novel field of transplantation using allografts to replace "like with like" in patients suffering traumatic or congenital tissue loss. This surgical methodological protocol shows the use of a non-suture cuff technique for super-microvascular anastomosis in an orthotopic mouse hind limb transplantation model. The model specifically allows for comparison between established paradigms in solid organ transplantation with a novel form of transplants consisting of various different tissue components. Uniquely, this model allows for the transplantation of a viable vascularized bone marrow compartment and niche that have the potential to exert a beneficial effect on the balance of immune acceptance and rejection. This technique provides a tool to investigate alloantigen recognition and allograft rejection and acceptance, as well as enables the pursuit of functional nerve regeneration studies to further advance this novel field of transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828154PMC
http://dx.doi.org/10.3791/53483DOI Listing

Publication Analysis

Top Keywords

field transplantation
12
hind limb
8
limb transplantation
8
novel field
8
model allows
8
transplantation
7
orthotopic hind
4
mouse
4
transplantation mouse
4
mouse vivo
4

Similar Publications

Function and Regulation of Age-Associated B Cells in Diseases.

J Cell Physiol

January 2025

Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.

The aging process often leads to immune-related diseases, including infections, tumors, and autoimmune disorders. Recently, researchers identified a special subpopulation of B cells in elderly female mice that increases with age and accumulates prematurely in mouse models of autoimmune diseases or viral infections; these B cells are known as age-related B cells (ABCs). These cells possess distinctive cell surface phenotypes and transcriptional characteristics, and the cell population is widely recognized as CD11cCD11bT-betCD21CD23 cells.

View Article and Find Full Text PDF

A vaccine against cytomegalovirus: how close are we?

J Clin Invest

January 2025

Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

The pursuit of a vaccine against the human cytomegalovirus (HCMV) has been ongoing for more than 50 years. HCMV is the leading infectious cause of birth defects, including damage to the brain, and is a common cause of complications in organ transplantation. The complex biology of HCMV has made vaccine development difficult, but a recent meeting sponsored by the National Institute of Allergy and Infectious Diseases in September of 2023 brought together experts from academia, industry, and federal agencies to discuss progress in the field.

View Article and Find Full Text PDF

Renal pseudotumors, which mimic tumors on imaging, pose diagnostic challenges that can lead to unnecessary interventions. Sensing ultrasound localization microscopy (sULM) is an advanced imaging technique that uses ultrasound imaging and microbubbles as sensors to visualize kidney functional units. This study aims to investigate whether sULM could differentiate between renal pseudotumors and tumors based on the presence of glomeruli.

View Article and Find Full Text PDF

Clinical state and future directions of stem cell therapy in stroke rehabilitation.

Exp Neurol

December 2024

Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA. Electronic address:

Despite substantial advances in the acute management of stroke, it remains a leading cause of adult disability and mortality worldwide. Currently, the reperfusion modalities thrombolysis and thrombectomy benefit only a fraction of patients in the hyperacute phase of ischemic stroke. Thus, with the exception of vagal nerve stimulation combined with intensive physical therapy, there are no approved neuroprotective/neurorestorative therapies for stroke survivors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!