Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828206 | PMC |
http://dx.doi.org/10.3791/53597 | DOI Listing |
BMC Genomics
January 2025
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.
Background: Additional to total protein content, the amino acid (AA) profile is important to the nutritional value of soybean seed. The AA profile in soybean seed is a complex quantitative trait controlled by multiple interconnected genes and pathways controlling the accumulation of each AA. With a total of 621 soybean germplasm, we used three genome-wide association study (GWAS)-based approaches to investigate the genomic regions controlling the AA content and profile in soybean.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China.
The objective of this study was to develop a novel scoring model, assess its diagnostic value for complex appendicitis, and compare it with existing scoring systems. A total of 1,241 patients with acute appendicitis were included, comprising 868 patients in the modeling group (mean age, 35.6 ± 14.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
Diversity-generating retroelements (DGRs) create massive protein sequence variation (up to 10) in ecologically diverse microorganisms. A recent survey identified around 31,000 DGRs from more than 1,500 bacterial and archaeal genera, constituting more than 90 environment types. DGRs are especially enriched in the human gut microbiome and nano-sized microorganisms that seem to comprise most microbial life and maintain DGRs despite reduced genomes.
View Article and Find Full Text PDFNature
January 2025
Program of Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA.
Transcriptional regulation, which involves a complex interplay between regulatory sequences and proteins, directs all biological processes. Computational models of transcription lack generalizability to accurately extrapolate to unseen cell types and conditions. Here we introduce GET (general expression transformer), an interpretable foundation model designed to uncover regulatory grammars across 213 human fetal and adult cell types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!