"Centromeres" and "kinetochores" refer to the site where chromosomes associate with the spindle during cell division. Direct visualization of centromere-kinetochore proteins during the cell cycle remains a fundamental tool in investigating the mechanism(s) of these proteins. Advanced imaging methods in fluorescence microscopy provide remarkable resolution of centromere-kinetochore components and allow direct observation of specific molecular components of the centromeres and kinetochores. In addition, methods of indirect immunofluorescent (IIF) staining using specific antibodies are crucial to these observations. However, despite numerous reports about IIF protocols, few discussed in detail problems of specific centromere-kinetochore proteins.(1-4) Here we report optimized protocols to stain endogenous centromere-kinetochore proteins in human cells by using paraformaldehyde fixation and IIF staining. Furthermore, we report protocols to detect Flag-tagged exogenous CENP-A proteins in human cells subjected to acetone or methanol fixation. These methods are useful in detecting and quantifying endogenous centromere-kinetochore proteins and Flag-tagged CENP-A proteins, including those in human cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828215PMC
http://dx.doi.org/10.3791/53732DOI Listing

Publication Analysis

Top Keywords

centromere-kinetochore proteins
16
human cells
12
iif staining
8
endogenous centromere-kinetochore
8
proteins human
8
cenp-a proteins
8
proteins
7
centromere-kinetochore
6
immunofluorescence analysis
4
analysis endogenous
4

Similar Publications

Bromodomain protein BRD4 directs mitotic cell division of mouse fibroblasts by inhibiting DNA damage.

iScience

July 2024

Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

Bromodomain protein BRD4 binds to acetylated histones to regulate transcription. BRD4 also drives cancer cell proliferation. However, the role of BRD4 in normal cell growth has remained unclear.

View Article and Find Full Text PDF

Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membranous organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus.

View Article and Find Full Text PDF

Fluorescence complementation-based FRET imaging reveals centromere assembly dynamics.

Mol Biol Cell

April 2024

MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Center for Cross-disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China.

Visualization of specific molecules and their assembly in real time and space is essential to delineate how cellular dynamics and signaling circuit are orchestrated during cell division cycle. Our recent studies reveal structural insights into human centromere-kinetochore core CCAN complex. Here we introduce a method for optically imaging trimeric and tetrameric protein interactions at nanometer spatial resolution in live cells using fluorescence complementation-based Förster resonance energy transfer (FC-FRET).

View Article and Find Full Text PDF

The dynamic role of nucleoprotein SHCBP1 in the cancer cell cycle and its potential as a synergistic target for DNA-damaging agents in cancer therapy.

Cell Commun Signal

February 2024

Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.

Background: Malignant tumours seriously threaten human life and health, and effective treatments for cancer are still being explored. The ability of SHC SH2 domain-binding protein 1 (SHCBP1) to induce cell cycle disturbance and inhibit tumour growth has been increasingly studied, but its dynamic role in the tumour cell cycle and corresponding effects leading to mitotic catastrophe and DNA damage have rarely been studied.

Results: In this paper, we found that the nucleoprotein SHCBP1 exhibits dynamic spatiotemporal expression during the tumour cell cycle, and SHCBP1 knockdown slowed cell cycle progression by inducing spindle disorder, as reflected by premature mitotic entry and multipolar spindle formation.

View Article and Find Full Text PDF

Quantitative Super-Resolution Microscopy Reveals the Relationship between CENP-A Stoichiometry and Centromere Physical Size.

Int J Mol Sci

November 2023

State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!