Activation of human toll-like receptor-8 (TLR8), expressed in myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells, evokes a distinct cytokine profile which favors the development of Type 1 helper T cells. Part-structures of the 2-aminobenzimidazole scaffold were examined with a view to identifying structural requisites corresponding to the smallest possible fragment of the benzimidazole core that would allow for retention of TLR8-agonistic activity. TLR8-specific agonistic activity was retained in 1-pentyl-4-phenyl-1H-imidazol-2-amine. The crystal structure of this compound bound to the TLR8 ectodomain displayed binding interactions that are common to other TLR8 agonists. This compound showed markedly attenuated proinflammatory properties in ex vivo human blood models. SAR studies revealed that 4-(2-(benzyloxy)phenyl)-1-pentyl-1H-imidazol-2-amine inhibited TLR signaling in a variety of TLR reporter cell lines, as well as in pharmacologically relevant human blood model systems. A kinase screen of this compound showed relative specificity for calmodulin kinases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b00023DOI Listing

Publication Analysis

Top Keywords

human toll-like
8
dendritic cells
8
human blood
8
identification human
4
toll-like receptor
4
receptor tlr
4
tlr 8-specific
4
8-specific agonist
4
agonist functional
4
functional pan-tlr
4

Similar Publications

Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear.

View Article and Find Full Text PDF

CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression.

JCI Insight

January 2025

Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain.

View Article and Find Full Text PDF

The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations.

View Article and Find Full Text PDF

Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma.

Eur J Med Res

January 2025

Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.

Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!