Partitioning of super-hydrophobic organic contaminants (SHOCs) to dissolved or colloidal materials such as surfactants can alter their behaviour by enhancing apparent aqueous solubility. Relevant partition constants are, however, challenging to quantify with reasonable accuracy. Partition constants to colloidal surfactants can be measured by introducing a polymer (PDMS) as third phase with known PDMS-water partition constant in combination with the mass balance approach. We quantified partition constants of PCBs and PCDDs (log KOW 5.8-8.3) between water and sodium dodecyl sulphate monomers (KMO) and micelles (KMI). A refined, recently introduced swelling-based polymer loading technique allowed highly precise (4.5-10% RSD) and fast (<24 h) loading of SHOCs into PDMS, and due to the miniaturisation of batch systems equilibrium was reached in <5 days for KMI and <3 weeks for KMO. SHOC losses to experimental surfaces were substantial (8-26%) in monomer solutions, but had a low impact on KMO (0.10-0.16 log units). Log KMO for PCDDs (4.0-5.2) were approximately 2.6 log units lower than respective log KMI, which ranged from 5.2 to 7.0 for PCDDs and 6.6-7.5 for PCBs. The linear relationship between log KMI and log KOW was consistent with more polar and moderately hydrophobic compounds. Apparent solubility increased with increasing hydrophobicity and was highest in micelle solutions. However, this solubility enhancement was also considerable in monomer solutions, up to 200 times for OCDD. Given the pervasive presence of surfactant monomers in typical field scenarios, these data suggest that low surfactant concentrations may be effective long-term facilitators for subsurface transport of SHOCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.02.122DOI Listing

Publication Analysis

Top Keywords

partition constants
12
solubility enhancement
4
enhancement dioxins
4
dioxins pcbs
4
pcbs surfactant
4
surfactant monomers
4
monomers micelles
4
micelles quantified
4
quantified polymer
4
polymer depletion
4

Similar Publications

Meta-Analysis of the Input and Disposition of Various Dosage Forms of Methylprednisolone in Healthy Subjects Utilizing a Physiologically Based Pharmacokinetic Model.

AAPS J

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, New York, 14214, USA.

The study quantitatively analyzes and compares the pharmacokinetics (PK) of methylprednisolone (MPL) in humans upon administration of various dosage forms. The PK parameters and profiles of MPL in healthy subjects were collected from 22 literature sources. A minimal physiologically based pharmacokinetic (mPBPK) model consisting of blood and two tissue (lumped liver and kidney, remainder) compartments with nonlinear tissue partitioning was applied to describe MPL disposition.

View Article and Find Full Text PDF

Inclusion complexation of the sunscreen ingredient avobenzone (AVB) with β-cyclodextrin (β-CD) was investigated to improve its aqueous solubility and photostability; another ultraviolet (UV) filter, oxybenzone (OXB), and the phytochemical antioxidant curcumin (CUR) served as a comparison. In this study, the 1-octanol/water partition coefficients, acid dissociation constants, phase-solubility diagrams with β-CD, and ultraviolet-visible (UV-vis) spectral changes induced by UVA1 (365 nm) irradiation were evaluated. β-CD at concentrations 50-100 times that of AVB most effectively protected the photostability of AVB.

View Article and Find Full Text PDF

Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.

View Article and Find Full Text PDF

The phospholipid membrane-water partition coefficients () and equilibrium binding affinities for human serum albumin (HSA) of 60 structurally diverse perfluoroalkyl and polyfluoroalkyl substances (PFAS) were evaluated through laboratory measurements and modeling to enhance our understanding of PFAS distribution in organisms. Per- and polyfluoroalkyl carboxylic acids exhibited a 0.36 ± 0.

View Article and Find Full Text PDF

Hydrophobicity is associated with drug transport across membranes and is expressed as the partition coefficient log P for neutral drugs and the distribution coefficient log D for acidic and basic drugs. The log P and log D predictions are deductively (or with artificial intelligence) estimated as the sum of the partial contributions of the scaffold and substituents of a single molecule and are used widely and affirmatively. However, their predictions have not always been comprehensively accurate beyond scaffold differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!